R/get_cluster_profiles.R

Defines functions use_clusters get_cluster_profiles

Documented in get_cluster_profiles

#' Build a consensus copy number profile for each cluster or clone
#'
#' @param cnr a cnr bundle containing a `final_cluster` column in Y.
#'
#' @param minimum_cells minimum number of cells in a cluster, best if greater than 3
#' to estimate a median
#'
#' @param base.ploidy base ploidy of the tumor, default 2 i.e. diploid
#'
#' @param cluster.column column containing clusters
#' 
#' @return
#'
#' Function returns the cnr with three additional tables. 
#' * uclust : number of cells in each final_cluster, only clusters
#'  greater than the specified minimum number of cells is shown
#' * DDRC.df: a matrix containing the representative profile for each
#'  `final_cluster` at the bin level.
#' * DDRC.g : interpolation of the DDRC.df at the gene level for each `final_cluster`.
#'
#' @examples
#'
#' data(cnr)
#'
#' cnr <- phyloCNR(cnr)
#'
#' cnr <- setBrayClusters(cnr, tree.height = 0.065)
#'
#' cnr <- cluster_heterogeneity(cnr, cluster_column = "BrayC")
#'
#' cnr <- get_cluster_profiles(cnr)
#' 
#' @export
get_cluster_profiles <- function(cnr, minimum_cells = 3, base.ploidy = 2,
                                 cluster.column = "final_cluster") {

    uclust <- use_clusters(cnr, minimum_cells = minimum_cells,
                           cluster.column = cluster.column)
    
    ## generate consensus profile for each cluster and bind them
    ## this also removes clusteres with a low number of cells
    DDRC.df <- sapply(names(uclust), function(clust) {
    ## getting consensus copy number profile for each cluster
        udf <- cnr$X[, cnr$Y$cellID[cnr$Y[,cluster.column] == clust]]
        if ( ncol(udf) != 0 && ! is.null(ncol(udf)) ) {
            apply(udf, 1, median, na.rm = TRUE)
        }
    })

    DDRC.df[DDRC.df >= base.ploidy ] <- ceiling(DDRC.df[DDRC.df >= base.ploidy])
    DDRC.df[DDRC.df < base.ploidy] <- floor(DDRC.df[DDRC.df < base.ploidy])
    
    ## DDRC.g <- round(t(expand2genes(DDRC.df, gene.index = cnr$gene.index)))

    DDRC.g <- sapply(names(uclust), function(clust) {
        ## getting consensus copy number profile for each cluster
        udf <- cnr$genes[cnr$Y$cellID[cnr$Y[, cluster.column]  == clust],]
        if ( ncol(udf) != 0 && ! is.null(ncol(udf)) ) {
            apply(udf, 1, median, na.rm = TRUE)
        }
    })


    
    cnr[["uclust"]] <- uclust
    cnr[["DDRC.df"]] <- DDRC.df
    cnr[["DDRC.g"]] <- DDRC.g

    return(cnr)
    
}


#' select clusters to use based on a minimum number of cells
#'
#' @param cnr a cnr bundle containing the output of setCluster
#'
#' @param minimum_cells minimum number of cells in a cluster, must be greater than 3
#' to estimate a median
#'
#' @param cluster.column = column with clusters
#' 
#' @keywords internal
#' @noRd
use_clusters <- function(cnr, minimum_cells = 3, cluster.column = "final_cluster") {

    ucd <- table(cnr[["Y"]][, cluster.column])
    ucd <- ucd[ucd >= minimum_cells]
    
    return(ucd)

} # use_clusters
SingerLab/gac documentation built on Oct. 14, 2022, 4:09 a.m.