RunSingleR: Run SingleR For A Seurat Object

View source: R/SingleR_Seurat.R

RunSingleRR Documentation

Run SingleR For A Seurat Object

Description

Compute SingleR classification on a Seurat object

Usage

RunSingleR(
  seuratObj = NULL,
  datasets = c("hpca", "blueprint", "dice", "monaco", "immgen"),
  assay = NULL,
  resultTableFile = NULL,
  rawDataFile = NULL,
  minFraction = 0.01,
  showHeatmap = TRUE,
  maxCellsForHeatmap = 20000,
  nThreads = NULL,
  createConsensus = TRUE
)

Arguments

seuratObj

A Seurat object

datasets

One or more datasets to use as a reference. Allowable values are: hpca, blueprint, dice, monaco, and immgen. See celldex package for available datasets.

assay

The assay in the seurat object to use

resultTableFile

If provided, a table of results will be saved here

rawDataFile

If provided, the complete SingleR results will be saved to this file

minFraction

If provided, any labels present with fraction of this or fewer across cells will be converted to Unknown

showHeatmap

If true, heatmaps will be generated showing the SingleR calls

maxCellsForHeatmap

The heatmap will only be plotted if the total cells is below this number

nThreads

If provided, this integer value is passed to SingleR's BPPARAM argument. On windows ths is passed to BiocParallel::SnowParam(). On other OS it is passed to BiocParallel::MulticoreParam()

createConsensus

If true, a pseudo-consensus field will be created from the course labels from all datasets. Labels will be simplified in an attempt to normalize into the categories of Bcells, NK/T_cells and Myeloid.

Value

The modified seurat object


bimberlabinternal/CellMembrane documentation built on Nov. 15, 2024, 9:34 p.m.