##' @import utils
##' @import graphics
##' @import stats
##' @export
predict.egame12 <- function(object, newdata, type = c("outcome", "action"),
na.action = na.pass, ...)
{
type <- match.arg(type)
if (missing(newdata) || is.null(newdata)) {
## use original data if 'newdata' not supplied
mf <- object$model
} else {
## get rid of left-hand variables in the formula, since they're not
## needed for fitting
formulas <- Formula(delete.response(terms(formula(object$formulas))))
mf <- model.frame(formulas, data = newdata, na.action = na.action,
xlev = object$xlevels)
## check that variables are of the right classes
Terms <- attr(object$model, "terms")
if (!is.null(cl <- attr(Terms, "dataClasses")))
.checkMFClasses(cl, mf)
}
regr <- list()
for (i in seq_len(length(object$formulas)[2]))
regr[[i]] <- model.matrix(object$formulas, data = mf, rhs = i)
## get action probabilities, as given by fitted model parameters
ans <- makeProbs12(object$coefficients, regr = regr, link = object$link, type
= object$type)
ans <- do.call(cbind, ans)
if (type == "outcome") {
ans <- data.frame(cbind(ans[, 1], ans[, 2] * ans[, 3],
ans[, 2] * ans[, 4]))
names(ans) <- paste("Pr(", levels(object$y), ")", sep = "")
} else {
ans <- as.data.frame(ans)
names(ans)[1:2] <- paste("Pr(", c("", "~"), levels(object$y)[1], ")",
sep = "")
names(ans)[3:4] <- paste("Pr(", levels(object$y)[2:3], "|~",
levels(object$y)[1], ")", sep = "")
names(ans) <- gsub("~~", "", names(ans))
}
return(ans)
}
sbi12 <- function(y, regr, link)
{
names(regr) <- character(length(regr))
names(regr)[1:4] <- c("X1", "X3", "X4", "Z")
## have to do this because binomial() issues warning if it's not directly
## passed a character string to its link argument
if (link == "probit") {
fam <- binomial(link = "probit")
} else {
fam <- binomial(link = "logit")
}
## regression for player 2's choice
Z2 <- regr$Z[y != 1, ]
y2 <- as.numeric(y == 3)[y != 1]
m2 <- suppressWarnings(glm.fit(Z2, y2, family = fam))
p4 <- as.numeric(regr$Z %*% coef(m2))
p4 <- if (link == "probit") pnorm(p4) else plogis(p4)
## regression for player 1's choice
X1 <- cbind(-regr$X1, (1 - p4) * regr$X3, p4 * regr$X4)
y1 <- as.numeric(y != 1)
m1 <- suppressWarnings(glm.fit(X1, y1, family = fam))
## need to multiply by sqrt(2) because the standard glm assumes dispersion
## parameter 1, but agent error implies dispersion parameter sqrt(2)
ans <- sqrt(2) * c(coef(m1), coef(m2))
return(ans)
}
makeSDs12 <- function(b, regr, type)
{
sds <- vector("list", 5)
rcols <- sapply(regr, ncol)
if (length(rcols) == 5) { ## sdByPlayer == FALSE
v <- exp(as.numeric(regr[[5]] %*% b))
for (i in 1:5) sds[[i]] <- v
} else {
v1 <- exp(as.numeric(regr[[5]] %*% b[1:rcols[5]]))
v2 <- exp(as.numeric(regr[[6]] %*% b[(rcols[5]+1):length(b)]))
if (type == "agent") {
sds[[1]] <- sds[[2]] <- v1
sds[[3]] <- sds[[4]] <- v2
} else {
sds[[1]] <- sds[[2]] <- sds[[3]] <- v1
sds[[4]] <- sds[[5]] <- v2
}
}
return(sds)
}
makeProbs12 <- function(b, regr, link, type)
{
utils <- makeUtils(b, regr, nutils = 4,
unames = c("u11", "u13", "u14", "u24"))
## length(utils$b) == 0 means no terms left for the variance components, so
## set these to 1
if (length(utils$b) == 0) {
sds <- as.list(rep(1, 5))
} else {
sds <- makeSDs12(utils$b, regr, type)
}
linkfcn <- switch(link,
logit = function(x, sd = 1) plogis(x, scale = sd),
probit = pnorm)
if (type == "private") {
sd4 <- sqrt(sds[[4]]^2 + sds[[5]]^2)
} else {
sd4 <- sqrt(sds[[3]]^2 + sds[[4]]^2)
}
p4 <- finiteProbs(linkfcn(utils$u24, sd = sd4))
p3 <- 1 - p4
if (type == "private") {
sd2 <- sqrt(p3^2 * sds[[2]]^2 + p4^2 * sds[[3]]^2 + sds[[1]]^2)
} else {
sd2 <- sqrt(sds[[1]]^2 + sds[[2]]^2)
}
p2 <- p3 * utils$u13 + p4 * utils$u14 - utils$u11
p2 <- finiteProbs(linkfcn(p2, sd = sd2))
p1 <- 1 - p2
return(list(p1 = p1, p2 = p2, p3 = p3, p4 = p4))
}
actionsToOutcomes12 <- function(probs, log.p = TRUE)
{
probs <- do.call(cbind, probs)
ans <- cbind(log(probs[, 1]),
log(probs[, 2]) + log(probs[, 3]),
log(probs[, 2]) + log(probs[, 4]))
if (!log.p) ans <- exp(ans)
return(ans)
}
logLik12Base <- function(b, y, regr, link, type, ...)
{
names(regr) <- character(length(regr))
names(regr)[1:4] <- c("X1", "X3", "X4", "Z")
probs <- makeProbs12(b, regr, link, type)
logProbs <- actionsToOutcomes12(probs, log.p = TRUE)
ans <- logProbs[cbind(1:nrow(logProbs), y)]
return(ans)
}
logLik12 <- function(b, y, regr, link, type, logF, Cauchy, Firth, FirthExtra,...)
{
names(regr) <- character(length(regr))
names(regr)[1:4] <- c("X1", "X3", "X4", "Z")
probs <- makeProbs12(b, regr, link, type)
logProbs <- actionsToOutcomes12(probs, log.p = TRUE)
ans <- logProbs[cbind(1:nrow(logProbs), y)]
if(Cauchy){
scale <- ifelse(str_detect(names(b), "Intercept"), 10,2.5)
ans <- sum(ans,sum(-log((1+ (b/scale)^2))))
}
if(Firth){
u <- makeUtils(b, regr, nutils = 4,
unames = c("u11", "u13", "u14", "u24"))
A <- -hessian12(b, y=y, regr=regr, link=link, type=type, FirthExtra=FirthExtra, p=probs, u=u)
D <- determinant(A)
if(D$sign<0){warning("The determinant of the Hessian is negative. Consider switching to Cauchy.")}
D <- D$m/2
ans <- sum(ans, D, na.rm=TRUE)
}
if(logF){ #b*m/2 - m* log(1+exp(b))
m <- ifelse(str_detect(names(b), "Intercept"),1,1)
ans <- sum(ans,sum(b*m/2 - m* log(1+exp(b))))
}
return(sum(ans))
}
logLikGrad12 <- function(b, y, regr, link, type, ...)
{
names(regr) <- character(length(regr))
names(regr)[1:4] <- c("X1", "X3", "X4", "Z")
u <- makeUtils(b, regr, nutils = 4,
unames = c("u11", "u13", "u14", "u24"))
p <- makeProbs12(b, regr, link, type)
n <- nrow(regr$Z)
rcols <- sapply(regr, ncol)
if (link == "probit" && type == "private") {
dp4db <- matrix(0L, nrow = n, ncol = sum(rcols[1:3]))
dp4dg <- dnorm(u$u24 / sqrt(2)) * regr$Z / sqrt(2)
dp4 <- cbind(dp4db, dp4dg)
dp3 <- -dp4
num2 <- p$p3 * u$u13 + p$p4 * u$u14 - u$u11
denom2 <- sqrt(1 + p$p3^2 + p$p4^2)
dn2 <- dnorm(num2 / denom2)
dp2db1 <- dn2 * (-regr$X1 / denom2)
dp2db3 <- dn2 * p$p3 * regr$X3 / denom2
dp2db4 <- dn2 * p$p4 * regr$X4 / denom2
dp2dg <- dn2 * ((u$u14-u$u13)*denom2 - (p$p4-p$p3)*num2/denom2)
dp2dg <- (dp2dg * dp4dg) / (denom2^2)
Dp2 <- cbind(dp2db1, dp2db3, dp2db4, dp2dg)
Dp1 <- -Dp2
Dp3 <- dp3
Dp4 <- dp4
} else if (type == "agent") {
## unfortunately these are not as consistent in the notation as the
## gradients in egame122, egame123, and ultimatum -- I intend to fix
## this for the sake of future maintainers' sanity, but the ugliness
## here doesn't cause any user-visible problems
derivCDF <- switch(link,
logit = dlogis,
probit = dnorm)
dp4 <- derivCDF(u$u24 / sqrt(2)) / sqrt(2)
Dp4 <- cbind(matrix(0L, nrow = nrow(regr$X1), ncol = sum(rcols[1:3])),
dp4 * regr$Z)
Dp3 <- -Dp4
dp1 <- derivCDF((u$u11 - p$p3 * u$u13 - p$p4 * u$u14) / sqrt(2)) /
sqrt(2)
dbp1 <- dp1 * cbind(regr$X1, -p$p3 * regr$X3, -p$p4 * regr$X4)
dgp1 <- dp1 * dp4 * (u$u13 - u$u14) * regr$Z
Dp1 <- cbind(dbp1, dgp1)
Dp2 <- -Dp1
}
dL1 <- Dp1 / p$p1
dL3 <- Dp2 / p$p2 + Dp3 / p$p3
dL4 <- Dp2 / p$p2 + Dp4 / p$p4
ans <- matrix(NA, nrow = n, ncol = sum(rcols[1:4]))
ans[y == 1, ] <- dL1[y == 1, ]
ans[y == 2, ] <- dL3[y == 2, ]
ans[y == 3, ] <- dL4[y == 3, ]
return(ans)
}
makeResponse12 <- function(yf)
{
if (length(dim(yf))) { # response specified as dummies
Y <- yf
if (ncol(Y) > 2)
warning("only first two columns of response will be used")
Y <- Y[, 1:2]
if (!all(unlist(yf) %in% c(0L, 1L)))
stop("dummy responses must be dummy variables")
y <- numeric(nrow(Y))
y[Y[, 1] == 0] <- 1
y[Y[, 1] == 1 & Y[, 2] == 0] <- 2
y[Y[, 1] == 1 & Y[, 2] == 1] <- 3
yf <- as.factor(y)
levels(yf) <- c(paste("~", names(Y)[1], sep = ""),
paste(names(Y)[1], ",~", names(Y)[2], sep = ""),
paste(names(Y)[1], ",", names(Y)[2], sep = ""))
} else {
yf <- as.factor(yf)
if (nlevels(yf) != 3) stop("dependent variable must have three values")
}
return(yf)
}
##' Strategic model with 2 players, 3 terminal nodes
##'
##' Fits a strategic model with two players and three terminal nodes, as in the
##' game illustrated below in "Details".
##'
##' The model corresponds to the following extensive-form game, described in
##' Signorino (2003):
##' \preformatted{
##' . 1
##' . /\
##' . / \
##' . / \ 2
##' . u11 /\
##' . / \
##' . / \
##' . u13 u14
##' . 0 u24}
##'
##' If Player 1 chooses L, the game ends and Player 1 receives payoffs of u11.
##' (Player 2's utilities in this case cannot be identified in a statistical
##' model.) If Player 1 chooses L, then Player 2 can choose L, resulting in
##' payoffs of u13 for Player 1 and 0 for Player 2, or R, with payoffs of u14
##' for 1 and u24 for 2.
##'
##' The four equations specified in the function's \code{formulas} argument
##' correspond to the regressors to be placed in u11, u13, u14, and u24
##' respectively. If there is any regressor (including the constant) placed in
##' all of u11, u13, and u14, \code{egame12} will stop and issue an error
##' message, because the model is then unidentified (see Lewis and Schultz
##' 2003). There are two equivalent ways to express the formulas passed to this
##' argument. One is to use a list of four formulas, where the first contains
##' the response variable(s) (discussed below) on the left-hand side and the
##' other three are one-sided. For instance, suppose:
##' \itemize{
##' \item u11 is a function of \code{x1}, \code{x2}, and a constant
##' \item u13 is set to 0
##' \item u14 is a function of \code{x3} and a constant
##' \item u24 is a function of \code{z} and a constant.}
##' The list notation would be \code{formulas = list(y ~ x1 + x2, ~ 0, ~ x3, ~
##' z)}. The other method is to use the \code{\link{Formula}} syntax, with one
##' left-hand side and four right-hand sides (separated by vertical bars). This
##' notation would be \code{formulas = y ~ x1 + x2 | 0 | x3 | z}.
##'
##' To fix a utility at 0, just use \code{0} as its equation, as in the example
##' just given. To estimate only a constant for a particular utility, use
##' \code{1} as its equation.
##'
##' There are three equivalent ways to specify the outcome in \code{formulas}.
##' One is to use a numeric vector with three unique values, with their values
##' (from lowest to highest) corresponding with the terminal nodes of the game
##' tree illustrated above (from left to right). The second is to use a factor,
##' with the levels (in order as given by \code{levels(y)}) corresponding to the
##' terminal nodes. The final way is to use two indicator variables, with the
##' first standing for whether Player 1 moves L (0) or R (1), the second
##' standing for Player 2's choice if Player 1 moves R. (The values of the
##' second when Player 1 moves L should be set to 0 or 1, \strong{not}
##' \code{NA}, in order to ensure that observations are not dropped from the
##' data when \code{na.action = na.omit}.) The way to specify \code{formulas}
##' when using indicator variables is, for example, \code{y1 + y2 ~ x1 + x2 | 0
##' | x3 | z}.
##'
##' If \code{fixedUtils} or \code{sdformula} is specified, the estimated
##' parameters will include terms labeled \code{log(sigma)} (for probit links)
##' or \code{log(lambda)}. These are the scale parameters of the stochastic
##' components of the players' utility. If \code{sdByPlayer} is \code{FALSE},
##' then the variance of error terms (or the equation describing it, if
##' \code{sdformula} contains non-constant regressors) is assumed to be common
##' across all players. If \code{sdByPlayer} is \code{TRUE}, then two variances
##' (or equations) are estimated: one for each player. For more on the
##' interpretation of the scale parameters in these models and how it differs
##' between the agent error and private information models, see Signorino
##' (2003).
##'
##' The model is fit using \code{\link{maxLik}}, using the BFGS optimization
##' method by default (see \code{\link{maxBFGS}}). Use the \code{method}
##' argument to specify an alternative from among those supplied by
##' \code{maxLik}.
##' @param formulas a list of four formulas, or a \code{\link{Formula}} object
##' with four right-hand sides. See "Details" and the examples below.
##' @param data a data frame containing the variables in the model.
##' @param subset optional logical expression specifying which observations from
##' \code{data} to use in fitting.
##' @param na.action how to deal with \code{NA}s in \code{data}. Defaults to
##' the \code{na.action} setting of \code{\link{options}}. See
##' \code{\link{na.omit}}.
##' @param link whether to use a probit (default) or logit link structure,
##' @param type whether to use an agent-error ("agent", default) or
##' private-information ("private") stochastic structure.
##' @param startvals whether to calculate starting values for the optimization
##' using statistical backwards induction ("sbi", default), draw them from a
##' uniform distribution ("unif"), or to set them all to 0 ("zero")
##' @param fixedUtils numeric vector of values to fix for u11, u13, u14, and u24
##' respectively. \code{NULL} (the default) indicates that these should be
##' estimated with regressors rather than fixed.
##' @param sdformula an optional list of formulas or a \code{\link{Formula}}
##' containing a regression equation for the scale parameter. The formula(s)
##' should have nothing on the left-hand side; the right-hand side should have
##' one equation if \code{sdByPlayer} is \code{FALSE} and two equations if
##' \code{sdByPlayer} is \code{TRUE}. See the examples below for how to specify
##' \code{sdformula}.
##' @param sdByPlayer logical: if scale parameters are being estimated (i.e.,
##' \code{sdformula} or \code{fixedUtils} is non-\code{NULL}), should a separate
##' one be estimated for each player? This option is ignored unless
##' \code{fixedUtils} or \code{sdformula} is specified.
##' @param boot integer: number of bootstrap iterations to perform (if any).
##' @param bootreport logical: whether to print status bar when performing
##' bootstrap iterations.
##' @param profile output from running \code{\link{profile.game}} on a previous
##' fit of the model, used to generate starting values for refitting when an
##' earlier fit converged to a non-global maximum.
##' @param penalty type of penalty to use for penalized maximum likelihood estimation.
##' default is "none" (no penalty is used). Options include \describe{
##' \item{"Firth"}{for Firth's (1993) Jeffreys prior penalty}
##' \item{"Cauchy"}{for a Cauchy(0,2.5) penalty on non-intercepts and a Cauchy(0, 10) for intercepts}
##' \item{"logF"}{for a log-F(1,1) penalty}}
##' See Crisman-Cox, Gasparyan, and Signorino (2022) for more details on the use of penalized estimation.
##' @param method character string specifying which optimization routine to use
##' (see \code{\link{maxLik}})
##' @param ... other arguments to pass to the fitting function (see
##' \code{\link{maxLik}}).
##' @return An object of class \code{c("game", "egame12")}. A
##' \code{game} object is a list containing: \describe{
##' \item{\code{coefficients}}{estimated parameters of the model.}
##' \item{\code{vcov}}{estimated variance-covariance matrix. Cells referring to
##' a fixed parameter (e.g., a utility when \code{fixedUtils} is specified) will
##' contain \code{NA}s.}
##' \item{\code{log.likelihood}}{vector of individual log likelihoods (left
##' unsummed for use with non-nested model tests).}
##' \item{\code{call}}{the call used to produce the model.}
##' \item{\code{convergence}}{a list containing the optimization method used
##' (see argument \code{method}), the number of iterations to convergence, the
##' convergence code and message returned by \code{\link{maxLik}}, and an
##' indicator for whether the (analytic) gradient was used in fitting.}
##' \item{\code{formulas}}{the final \code{Formula} object passed to
##' \code{model.frame} (including anything specified for the scale parameters).}
##' \item{\code{link}}{the specified link function.}
##' \item{\code{type}}{the specified stochastic structure (i.e., agent error or
##' private information).}
##' \item{\code{model}}{the model frame containing all variables used in
##' fitting.}
##' \item{\code{xlevels}}{a record of the levels of any factor regressors.}
##' \item{\code{y}}{the dependent variable, represented as a factor.}
##' \item{\code{equations}}{names of each separate equation (e.g.,
##' "u1(sq)", "u1(cap)", etc.).}
##' \item{\code{fixed}}{logical vector specifying which parameter values, if
##' any, were fixed in the estimation procedure.}
##' \item{\code{boot.matrix}}{if \code{boot} was non-zero, a matrix of bootstrap
##' parameter estimates (otherwise \code{NULL}).}
##' \item{\code{localID}}{an indicator for whether the Hessian matrix is
##' negative definite, a sufficient condition for local identification of the
##' model parameters.}
##' }
##' The second class of the returned object, \code{egame12}, is for use in
##' generation of predicted probabilities.
##' @seealso \code{\link{summary.game}} and \code{\link{predProbs}} for
##' postestimation analysis; \code{\link{makeFormulas}} for formula
##' specification.
##' @export
##' @references Jeffrey B. Lewis and Kenneth A Schultz. 2003. "Revealing
##' Preferences: Empirical Estimation of a Crisis Bargaining Game with
##' Incomplete Information." \emph{Political Analysis} 11:345--367.
##'
##' Curtis S. Signorino. 2003. "Structure and Uncertainty in Discrete Choice
##' Models." \emph{Political Analysis} 11:316--344.
##' @author Casey Crisman-Cox (\email{ccrismancox@gmail.com}), Brenton Kenkel, and Curtis
##' S. Signorino
##' @example inst/examples/egame12.r
egame12 <- function(formulas, data, subset, na.action,
link = c("probit", "logit"),
type = c("agent", "private"),
startvals = c("sbi", "unif", "zero"),
fixedUtils = NULL,
sdformula = NULL,
sdByPlayer = FALSE,
boot = 0,
bootreport = TRUE,
profile,
method = "BFGS",
penalty= c("none", "Firth", "Cauchy", "logF"),
...)
{
cl <- match.call()
link <- match.arg(link)
type <- match.arg(type)
penalty <- match.arg(penalty)
if(class(startvals)=="character"){
startvals <- match.arg(startvals)
}
Firth <- (penalty=="Firth")
Cauchy <- (penalty=="Cauchy")
logF <- (penalty=="logF")
## various sanity checks
formulas <- checkFormulas(formulas)
if (is.null(fixedUtils) && length(formulas)[2] != 4)
stop("'formulas' should have four components on the right-hand side")
if (!is.null(fixedUtils)) {
if (length(fixedUtils) < 4)
stop("fixedUtils must have 4 elements (u11, u13, u14, u24)")
if (length(fixedUtils) > 4) {
warning("only the first 4 elements of fixedUtils will be used")
fixedUtils <- fixedUtils[1:4]
}
formulas <- update(formulas, . ~ 1 | 1 | 1 | 1)
if (startvals == "sbi")
startvals <- "zero"
if (is.null(sdformula))
sdformula <- if (sdByPlayer) Formula(~ 1 | 1) else Formula(~ 1)
}
if (!is.null(sdformula)) {
sdformula <- checkFormulas(sdformula, argname = "sdformula")
if (sdByPlayer && length(sdformula)[2] != 2)
stop("'sdformula' should have two components (one for each player) on the right-hand side when sdByPlayer == TRUE")
if (!sdByPlayer && length(sdformula)[2] != 1)
stop("'sdformula' should have exactly one component on the right-hand side")
formulas <- as.Formula(formula(formulas), formula(sdformula))
}
if (sdByPlayer && is.null(sdformula)) {
warning("to estimate SDs by player, you must specify 'sdformula' or 'fixedUtils'")
sdByPlayer <- FALSE
}
if (link == "logit" && type == "private") {
warning("logit link cannot be used with private information model; changing to probit link")
link <- "probit"
}
###Firth Checks
if(sum(Cauchy, Firth, logF) > 1){
stop("Chose only one penalty Cauchy, logF, or Firth")
}
## make the model frame
mf <- match(c("data", "subset", "na.action"), names(cl), 0L)
mf <- cl[c(1L, mf)]
mf$formula <- formulas
mf$drop.unused.levels <- TRUE
mf[[1]] <- as.name("model.frame")
mf <- eval(mf, parent.frame())
## get the response and store it as factor (yf) and numeric (y)
yf <- model.part(formulas, mf, lhs = 1, drop = TRUE)
yf <- makeResponse12(yf)
y <- as.numeric(yf)
## makes a list of the 4 (or more, if variance formulas specified) matrices
## of regressors to be passed to estimation functions
regr <- list()
for (i in seq_len(length(formulas)[2]))
regr[[i]] <- model.matrix(formulas, data = mf, rhs = i)
rcols <- sapply(regr, ncol)
## makes starting values -- specify "unif" (a numeric vector of length two)
## to control the interval from which uniform values are drawn
if (missing(profile) || is.null(profile)) {
if(is.numeric(startvals)){
sval <- startvals
}else{
if (startvals == "zero") {
sval <- rep(0, sum(rcols))
} else if (startvals == "unif") {
if (!methods::hasArg(unif))
unif <- c(-1, 1)
sval <- runif(sum(rcols), unif[1], unif[2])
} else if (startvals == "sbi") {
sval <- sbi12(y, regr, link)
sval <- c(sval, rep(0, sum(rcols) - length(sval)))
}
}
}else {
sval <- svalsFromProfile(profile)
}
## identification check
varNames <- lapply(regr, colnames)
idCheck <- (varNames[[1]] %in% varNames[[2]])
idCheck <- idCheck & (varNames[[1]] %in% varNames[[3]])
if (is.null(fixedUtils) && any(idCheck)) {
stop("Identification problem: the following variables appear in all three of player 1's utility equations: ",
paste(varNames[[1]][idCheck], collapse = ", "))
}
## give names to starting values
prefixes <- paste(c(rep("u1(", 3), "u2("), c(levels(yf), levels(yf)[3]),
")", sep = "")
sdterms <- if (!is.null(sdformula)) { if (sdByPlayer) 2L else 1L } else 0L
utils <- if (is.null(fixedUtils)) 1:4 else numeric(0)
varNames <- makeVarNames(varNames, prefixes, utils, link, sdterms)
hasColon <- varNames$hasColon
names(sval) <- varNames$varNames
## use the gradient iff no regressors in variance
gr <- if (is.null(sdformula)) logLikGrad12 else NULL
if(Cauchy | Firth | logF){gr <- NULL}
## deal with fixed utilities
fvec <- rep(FALSE, length(sval))
names(fvec) <- names(sval)
if (!is.null(fixedUtils)) {
sval[1:4] <- fixedUtils
fvec[1:4] <- TRUE
}
# if(Firth){
names(regr) <- character(length(regr))
names(regr)[1:4] <- c("X1", "X3", "X4", "Z")
rcols <- sapply(regr, ncol)
n <- nrow(regr$Z)
FirthExtra <- list()
FirthExtra$regr2 <- regr
FirthExtra$regr2$Z <- cbind(matrix(0,
nrow=n, ncol= sum(rcols[1:3])),
regr$Z)
FirthExtra$regr2$X1 <- cbind(regr$X1,
matrix(0,
nrow=n, ncol= sum(rcols[2:4])))
FirthExtra$regr2$X3 <- cbind(matrix(0,
nrow=n, ncol= sum(rcols[1])),
regr$X3,
matrix(0,
nrow=n, ncol= sum(rcols[3:4])))
FirthExtra$regr2$X4 <- cbind(matrix(0,
nrow=n, ncol= sum(rcols[1:2])),
regr$X4,
matrix(0,
nrow=n, ncol= sum(rcols[4])))
# if(type=="private"){
# cx <- function(x){
# tcrossprod(x[1:length(sval)], x[(length(sval)+1):(2*length(sval))])+
# tcrossprod(x[(length(sval)+1):(2*length(sval))], x[1:length(sval)])
# }
#
# FirthExtra$x24x24 <- t(apply(FirthExtra$regr2$Z, 1, tcrossprod))
# FirthExtra$x11x11 <- t(apply(FirthExtra$regr2$X1, 1, tcrossprod))
# FirthExtra$x13x13 <- t(apply(FirthExtra$regr2$X3, 1, tcrossprod))
# FirthExtra$x14x14 <- t(apply(FirthExtra$regr2$X4, 1, tcrossprod))
# FirthExtra$x13x24 <- t(apply(cbind(FirthExtra$regr2$X3, FirthExtra$regr2$Z), 1, cx))
# FirthExtra$x14x24 <- t(apply(cbind(FirthExtra$regr2$X4, FirthExtra$regr2$Z), 1, cx))
# FirthExtra$x11x13 <- t(apply(cbind(FirthExtra$regr2$X1, FirthExtra$regr2$X3),1, cx))
# FirthExtra$x11x14 <- t(apply(cbind(FirthExtra$regr2$X1, FirthExtra$regr2$X4),1, cx))
# FirthExtra$x13x14 <- t(apply(cbind(FirthExtra$regr2$X3, FirthExtra$regr2$X4),1, cx))
# }
# }else{
# FirthExtra <- NULL
# }
#
results <- maxLik(logLik = logLik12, grad = gr, start = sval, fixed = fvec,
method = method, y = y, regr = regr, link = link, type =
type, logF=logF, Cauchy=Cauchy, Firth=Firth, FirthExtra=FirthExtra,...)
## some optimization routines in maxLik have different convergence codes for
## success, so we need to retrieve the proper code(s) for the supplied
## method and check against it/them
cc <- convergenceCriterion(method)
if (!(results$code %in% cc)) {
warning("Model fitting did not converge\nCode:", results$code,
"\nMessage: ", results$message)
}
## check local identification
lid <- checkLocalID(results$hessian, fvec)
if(Cauchy | Firth | logF){
probs <- makeProbs12(results$estimate, regr, link, type)
u <- makeUtils(results$estimate, regr, nutils = 4,
unames = c("u11", "u13", "u14", "u24"))
H <- hessian12(results$estimate, y=y, regr=regr, link=link, type=type,
FirthExtra=FirthExtra, p=probs, u=u)
}else{
H <- results$hessian
}
if (!lid)
warning("Hessian is not negative definite; coefficients may not be locally identified")
if (boot > 0) {
bootMatrix <-
gameBoot(boot, report = bootreport, estimate = sval, y =
y, regr = regr, fn = logLik12, gr = gr, fixed = fvec,
method = method, link = link, type = type, logF=logF,
Cauchy = Cauchy, Firth = Firth, FirthExtra=FirthExtra,...)
}
## create a 'game' object to store output
ans <- list()
ans$coefficients <- results$estimate
ans$vcov <- getGameVcov(H, fvec)
OPG <- FALSE
if(anyNA(diag(ans$vcov)[!fvec]) || any(diag(ans$vcov)[!fvec]<0)){
ans$vcov <- getGameVcov(-crossprod(logLikGrad12(b = results$estimate, y = y, regr = regr,link = link,type = type)), fvec)
OPG <- TRUE
}
rownames(ans$vcov) <- colnames(ans$vcov) <- names(results$estimate)
ans$log.likelihood <- logLik12(results$estimate, y = y, regr = regr, link =
link, type = type,
logF=logF,
Cauchy = Cauchy,
Firth = Firth, FirthExtra=FirthExtra)
# ##sanity check on the hessians##
# ans$finalHessian <- results$hessian
#
# probs <- makeProbs12(results$estimate, regr, link, type)
# u <- makeUtils(results$estimate, regr, nutils = 4,
# unames = c("u11", "u13", "u14", "u24"))
# H <- hessian12(results$estimate, y=y, regr=regr, link=link, type=type, FirthExtra=FirthExtra, p=probs, u=u)
# ans$estHessian <- H
#
# Grad <- numDeriv::grad(logLik12, results$estimate, y=y, regr=regr, link=link, type=type,
# Cauchy=Cauchy, Firth=Firth, FirthExtra=FirthExtra,...)
ans$call <- cl
ans$convergence <- list(method = method, iter = nIter(results), code =
results$code, message = results$message, gradient =
!is.null(gr),
Penalty = c(logF,Cauchy, Firth),
# gradMaxLik = results$gradient,
# gradNumDeriv = Grad,
OPG=OPG)
ans$formulas <- formulas
ans$link <- link
ans$type <- type
ans$model <- mf
ans$xlevels <- .getXlevels(attr(mf, "terms"), mf)
ans$y <- yf
ans$equations <- names(hasColon)
attr(ans$equations, "hasColon") <- hasColon
ans$fixed <- fvec
if (boot > 0)
ans$boot.matrix <- bootMatrix
ans$localID <- lid
class(ans) <- c("game", "egame12")
return(ans)
}
hessian12 <- function(b, regr, y, type, link, FirthExtra, p, u){
regr2 <- FirthExtra$regr2
if(link=="probit" & type=="agent"){
in2 <- (-u$u11 + u$u13*(p$p3) + u$u14*p$p4)
d4 <- dnorm(u$u24/sqrt(2))
d2 <- dnorm((in2/sqrt(2)))
Dp4 <- regr2$Z * d4/sqrt(2)
DDB110 <- -regr2$X1 + regr2$X3*p$p3 + regr2$X4*p$p4 - ((u$u13)* Dp4) + ((u$u14)* Dp4)
# DDB11O <- t(apply(DDB110, 1, tcrossprod))
#
# x24x24 <- t(apply(regr2$Z, 1, tcrossprod))
# x24px24bx24 <- t(apply(regr2$Z, 1, function(x){x %*% t(x) %*%b%*%x}))
#
#
# xlist <- list(x13x24=cbind(regr2$X3, regr2$Z),
# x14x24=cbind(regr2$X4, regr2$Z))
#
# xlist <- lapply(xlist,
# apply,
# 1,
# function(x){
# tcrossprod(x[1:length(b)], x[(length(b)+1):(2*length(b))])+
# tcrossprod(x[(length(b)+1):(2*length(b))], x[1:length(b)])
# }
# )
# xlist<-lapply(xlist,t)
# DDp4Db.base <- ((-sqrt(2)/2) * p$p4 *d4 * x24px24bx24 - x24x24*(d4^2))/(2*p$p4^2) #OLD VECTOR FORMAT
DDp4Db <- t(regr2$Z * (y==3)*drop(((-sqrt(2)/2) * p$p4 *d4 *(regr2$Z%*% b)- (d4^2))/(2*p$p4^2) ) ) %*% regr2$Z
### D/Db of (Dp2/Db) / p2 is 3 parts####
# DD1 <- -d2* in2 * DDB11O/(2*sqrt(2) * p$p2)
# DD2 <- ((d4* u$u13 * x24px24bx24/(2*sqrt(2)) -
# d4* u$u14 * x24px24bx24/(2*sqrt(2)) -
# sqrt(2)/2 * xlist$x13x24 *d4+
# sqrt(2)/2 * xlist$x14x24 *d4)*
# dnorm(in2/sqrt(2)))/
# (sqrt(2)*p$p2)
# DD3 <- -((DDB11O * dnorm(in2/sqrt(2))^2) / (2 * p$p2^2))
# DDp2Db.base <- DD1+ DD2 +DD3
DD1.y2 <- t(DDB110* (y==2)* drop(-d2* in2/(2*sqrt(2) * p$p2))) %*% DDB110
DD2.y2 <- ((t(regr2$Z * (y==2)* drop(d4* u$u13 * (dnorm(in2/sqrt(2))/(sqrt(2)*p$p2)) * (regr2$Z %*% b)/(2*sqrt(2)))) %*% regr2$Z -
t(regr2$Z* (y==2)* drop(d4* u$u14 * (dnorm(in2/sqrt(2))/(sqrt(2)*p$p2)) * (regr2$Z %*% b)/(2*sqrt(2)))) %*% regr2$Z -
(t(regr2$X3 * (y==2)* drop(sqrt(2)/2 * (dnorm(in2/sqrt(2))/(sqrt(2)*p$p2)) *d4)) %*% regr2$Z+
t(t(regr2$X3 * (y==2)* drop(sqrt(2)/2 * (dnorm(in2/sqrt(2))/(sqrt(2)*p$p2)) *d4)) %*% regr2$Z))+
(t(regr2$X4 * (y==2)* drop(sqrt(2)/2 * (dnorm(in2/sqrt(2))/(sqrt(2)*p$p2)) *d4)) %*% regr2$Z+
t(t(regr2$X4 * (y==2)* drop(sqrt(2)/2 * (dnorm(in2/sqrt(2))/(sqrt(2)*p$p2)) *d4)) %*% regr2$Z))))
DD3.y2 <- -t(DDB110* (y==2)* drop( (dnorm(in2/sqrt(2))^2) / (2 * p$p2^2))) %*% DDB110
DDp2Db.y2 <- DD1.y2+ DD2.y2 +DD3.y2
DD1.y3 <- t(DDB110* (y==3)* drop(-d2* in2/(2*sqrt(2) * p$p2))) %*% DDB110
DD2.y3 <- ((t(regr2$Z * (y==3)* drop(d4* u$u13 * (dnorm(in2/sqrt(2))/(sqrt(2)*p$p2)) * (regr2$Z %*% b)/(2*sqrt(2)))) %*% regr2$Z -
t(regr2$Z * (y==3)* drop(d4* u$u14 * (dnorm(in2/sqrt(2))/(sqrt(2)*p$p2)) * (regr2$Z %*% b)/(2*sqrt(2)))) %*% regr2$Z -
(t(regr2$X3 * (y==3)* drop(sqrt(2)/2 * (dnorm(in2/sqrt(2))/(sqrt(2)*p$p2)) *d4)) %*% regr2$Z+
t(t(regr2$X3 * (y==3)* drop(sqrt(2)/2 * (dnorm(in2/sqrt(2))/(sqrt(2)*p$p2)) *d4)) %*% regr2$Z))+
(t(regr2$X4 * (y==3)*drop(sqrt(2)/2 * (dnorm(in2/sqrt(2))/(sqrt(2)*p$p2)) *d4)) %*% regr2$Z+
t(t(regr2$X4 * (y==3)* drop(sqrt(2)/2 * (dnorm(in2/sqrt(2))/(sqrt(2)*p$p2)) *d4)) %*% regr2$Z))))
DD3.y3 <- -t(DDB110* (y==3)* drop( (dnorm(in2/sqrt(2))^2) / (2 * p$p2^2))) %*% DDB110
DDp2Db.y3 <- DD1.y3+ DD2.y3 +DD3.y3
##2nd deriv of p3
# DDp3Db.base <- ((1/(sqrt(2))) * p$p3 * d4 * x24px24bx24 -x24x24 * d4^2)/(2*p$p3^2)
DDp3Db <- t(regr2$Z * (y==2)*drop( ((1/(sqrt(2))) * p$p3 * d4 * (regr2$Z%*% b) - d4^2)/(2*p$p3^2) ) ) %*% regr2$Z
##2nd deriv of p1 is also 3 parts
# DD1 <- d2 * in2 * DDB11O/(2*sqrt(2) * p$p1)
# DD2 <- -((d4* u$u13 * x24px24bx24/(2*sqrt(2)) -
# d4* u$u14 * x24px24bx24/(2*sqrt(2)) -
# sqrt(2)/2 * xlist$x13x24 *d4+
# sqrt(2)/2 * xlist$x14x24 *d4
# ) * dnorm(in2/sqrt(2)))/
# (sqrt(2)*p$p1)
# DD3 <- -(DDB11O * dnorm(in2/sqrt(2))^2) / (2 * p$p1^2)
# DDp1Db.base <- DD1+ DD2 +DD3
DD1 <- t(DDB110* (y==1)* drop(d2* in2/(2*sqrt(2) * p$p1))) %*% DDB110
DD2 <- -((t(regr2$Z * (y==1)* drop(d4* u$u13 * (dnorm(in2/sqrt(2))/(sqrt(2)*p$p1)) * (regr2$Z %*% b)/(2*sqrt(2)))) %*% regr2$Z -
t(regr2$Z * (y==1)* drop(d4* u$u14 * (dnorm(in2/sqrt(2))/(sqrt(2)*p$p1)) * (regr2$Z %*% b)/(2*sqrt(2)))) %*% regr2$Z -
(t(regr2$X3 * (y==1)* drop(sqrt(2)/2 * (dnorm(in2/sqrt(2))/(sqrt(2)*p$p1)) *d4)) %*% regr2$Z+
t(t(regr2$X3 * (y==1)*drop(sqrt(2)/2 * (dnorm(in2/sqrt(2))/(sqrt(2)*p$p1)) *d4)) %*% regr2$Z))+
(t(regr2$X4 * (y==1)* drop(sqrt(2)/2 * (dnorm(in2/sqrt(2))/(sqrt(2)*p$p1)) *d4)) %*% regr2$Z+
t(t(regr2$X4 * (y==1)*drop(sqrt(2)/2 * (dnorm(in2/sqrt(2))/(sqrt(2)*p$p1)) *d4)) %*% regr2$Z))))
DD3 <- -t(DDB110* (y==1)* drop( (dnorm(in2/sqrt(2))^2) / (2 * p$p1^2))) %*% DDB110
DDp1Db <- DD1+ DD2 +DD3
# DDB.base <- (y==3)*(DDp4Db.base+DDp2Db.base)+(y==2)*(DDp3Db.base + DDp2Db.base)+(y==1)*(DDp1Db.base)
DDB <- (DDp4Db+DDp2Db.y3) + (DDp3Db+DDp2Db.y2) +DDp1Db
}else{
if(type=="agent" & link=="logit"){
d4 <- dlogis(u$u24/sqrt(2))
In4 <- ((2 * d4 *p$p4 * exp(-u$u24/sqrt(2))) - d4)
d2 <- dlogis((-u$u11 + u$u13*p$p3 + u$u14*p$p4)/sqrt(2))
DDB110 <- -regr2$X1 + regr2$X3*p$p3 + regr2$X4*p$p4 - ((u$u13)* regr2$Z* d4/sqrt(2)) + ((u$u14)* regr2$Z* d4/sqrt(2))
DDB11O <- t(apply(DDB110, 1, tcrossprod))
x24x24 <- t(apply(regr2$Z, 1, tcrossprod))
x24px24bx24 <- t(apply(regr2$Z, 1, function(x){x %*% t(x) %*%b%*%x}))
xlist <- list(x13x24=cbind(regr2$X3, regr2$Z),
x14x24=cbind(regr2$X4, regr2$Z))
xlist <- lapply(xlist,
apply,
1,
function(x){
tcrossprod(x[1:length(b)], x[(length(b)+1):(2*length(b))])+
tcrossprod(x[(length(b)+1):(2*length(b))], x[1:length(b)])
}
)
xlist<-lapply(xlist,t)
DDp4Db.base <- (In4 * x24x24)/ ( 2*p$p4) - (x24x24* d4^2)/ (2*p$p4^2)
DDp4Db <- t(regr2$Z * (y==3)*drop( (In4)/( 2*p$p4)- (d4^2)/(2*p$p4^2) ) ) %*% regr2$Z
###D2p2/Db is in 3 parts
DD1 <- ((2 * d2 *p$p2 * exp(-(-u$u11 + u$u13*p$p3 + u$u14*p$p4)/sqrt(2)) - d2) * DDB11O)/(2*p$p2)
DD2 <- (((-0.5 * In4 *(u$u13 * x24x24))+
(0.5 * In4 *u$u14 * x24x24)-
sqrt(2) *xlist$x13x24 *d4/2+
sqrt(2) * xlist$x14x24 *d4/2)*
d2)/
(sqrt(2)*p$p2)
DD3 <- DDB11O * (d2^2)/(2*(p$p2^2))
DDp2Db.base <- DD1 + DD2- DD3
DD1.y2 <- t(DDB110 * (y==2)* drop(((2 * d2 *p$p2 * exp(-(-u$u11 + u$u13*p$p3 + u$u14*p$p4)/sqrt(2)) - d2) )/(2*p$p2))) %*% DDB110
DD2.y2 <- t(regr2$Z * (y==2)*drop((-0.5 *(d2/(sqrt(2)*p$p2)) * In4 *(u$u13)))) %*% regr2$Z+
t(regr2$Z * (y==2)*drop((0.5 *(d2/(sqrt(2)*p$p2)) * In4 *(u$u14)))) %*% regr2$Z-
(t(regr2$X3 * (y==2)* drop(sqrt(2) *(d2/(sqrt(2)*p$p2)) * d4/2)) %*% regr2$Z+
t(t(regr2$X3 * (y==2)* drop(sqrt(2) *(d2/(sqrt(2)*p$p2)) * d4/2)) %*% regr2$Z))+
(t(regr2$X4 * (y==2)* drop(sqrt(2) *(d2/(sqrt(2)*p$p2)) * d4/2)) %*% regr2$Z+
t(t(regr2$X4 * (y==2)* drop(sqrt(2) *(d2/(sqrt(2)*p$p2)) * d4/2)) %*% regr2$Z))
DD3.y2 <- t(DDB110 * (y==2)*drop((d2^2)/ (2*(p$p2^2)))) %*% DDB110
DDp2Db.y2 <- DD1.y2 + DD2.y2- DD3.y2
DD1.y3 <- t(DDB110 * (y==3)* drop(((2 * d2 *p$p2 * exp(-(-u$u11 + u$u13*p$p3 + u$u14*p$p4)/sqrt(2)) - d2) )/(2*p$p2))) %*% DDB110
DD2.y3 <- t(regr2$Z * (y==3)*drop((-0.5 *(d2/(sqrt(2)*p$p2)) * In4 *(u$u13)))) %*% regr2$Z+
t(regr2$Z * (y==3)*drop((0.5 *(d2/(sqrt(2)*p$p2)) * In4 *(u$u14)))) %*% regr2$Z-
(t(regr2$X3 * (y==3)* drop(sqrt(2) *(d2/(sqrt(2)*p$p2)) * d4/2)) %*% regr2$Z+
t(t(regr2$X3 * (y==3)* drop(sqrt(2) *(d2/(sqrt(2)*p$p2)) * d4/2)) %*% regr2$Z))+
(t(regr2$X4 * (y==3)* drop(sqrt(2) *(d2/(sqrt(2)*p$p2)) * d4/2)) %*% regr2$Z+
t(t(regr2$X4 * (y==3)* drop(sqrt(2) *(d2/(sqrt(2)*p$p2)) * d4/2)) %*% regr2$Z))
DD3.y3 <- t(DDB110 * (y==3)*drop((d2^2)/ (2*(p$p2^2)))) %*% DDB110
DDp2Db.y3 <- DD1.y3 + DD2.y3- DD3.y3
##p3
# DDp3Db.base <- -(In4 * x24x24)/ ( 2*p$p3) - (x24x24 * d4^2)/ (2*p$p3^2)
DDp3Db <- t(regr2$Z * (y==2)*drop( -(In4)/( 2*p$p3)- (d4^2)/(2*p$p3^2) ) ) %*% regr2$Z
###D2p1/Db is in 3 parts
# DD1 <- ((2 * d2 *p$p2 * exp(-(-u$u11 + u$u13*p$p3 + u$u14*p$p4)/sqrt(2)) - d2) * (DDB11O))/(2*p$p1)
# DD2 <- (((-0.5 * In4 *u$u13 * x24x24)+
# (0.5 * In4 *u$u14 * x24x24)-
# sqrt(2) *xlist$x13x24 *d4/2+
# sqrt(2) * xlist$x14x24 *d4/2)*
# d2)/
# (sqrt(2)*p$p1)
# DD3 <- ((DDB11O) * d2^2)/(2*(p$p1^2))
# DDp1Db.base <- -DD1 - DD2- DD3
DD1 <- t(DDB110 * (y==1)* drop(((2 * d2 *p$p2 * exp(-(-u$u11 + u$u13*p$p3 + u$u14*p$p4)/sqrt(2)) - d2) )/(2*p$p1))) %*% DDB110
DD2 <- t(regr2$Z * (y==1)*drop((-0.5 *(d2/(sqrt(2)*p$p1)) * In4 *(u$u13)))) %*% regr2$Z+
t(regr2$Z * (y==1)*drop((0.5 *(d2/(sqrt(2)*p$p1)) * In4 *(u$u14)))) %*% regr2$Z-
(t(regr2$X3 * (y==1)* drop(sqrt(2) *(d2/(sqrt(2)*p$p1)) * d4/2)) %*% regr2$Z+
t(t(regr2$X3 * (y==1)* drop(sqrt(2) *(d2/(sqrt(2)*p$p1)) * d4/2)) %*% regr2$Z))+
(t(regr2$X4 * (y==1)* drop(sqrt(2) *(d2/(sqrt(2)*p$p1)) * d4/2)) %*% regr2$Z+
t(t(regr2$X4 * (y==1)* drop(sqrt(2) *(d2/(sqrt(2)*p$p1)) * d4/2)) %*% regr2$Z))
DD3 <- t(DDB110 * (y==1)*drop((d2^2)/ (2*(p$p1^2)))) %*% DDB110
DDp1Db <- -DD1 - DD2 - DD3
# DDB.base <- (y==3)*(DDp4Db.base+DDp2Db.base)+(y==2)*(DDp3Db.base + DDp2Db.base)+(y==1)*(DDp1Db.base)
DDB <- (DDp4Db+DDp2Db.y3) + (DDp3Db+DDp2Db.y2) +DDp1Db
}else{
in2 <- (-u$u11 + u$u13*(p$p3) + u$u14*p$p4)
denom2 <- sqrt(1 + p$p3^2 + p$p4^2)
d4 <- dnorm(u$u24/sqrt(2))
d2 <- dnorm((in2/denom2))
roots <- (-sqrt(2)*d4*p$p3*regr2$Z + sqrt(2)*d4*p$p4*regr2$Z)
bigRoots <- - (in2*roots/(2*denom2^3)) +
(-d4*u$u13*regr2$Z/sqrt(2)+d4*u$u14*regr2$Z/sqrt(2))/denom2
DU4 <- -d4*u$u13*regr2$Z/sqrt(2) + d4*u$u14*regr2$Z/sqrt(2)
# roots.sq <- t(apply(roots, 1, tcrossprod))
# Broots.sq <- t(apply(bigRoots, 1, tcrossprod))
# x24px24bx24 <- t(apply(regr2$Z, 1, function(x){x %*% t(x) %*%b%*%x}))
#
#
# xlist <- list(roots.x1=cbind(regr2$X1, roots),
# roots.x3=cbind(regr2$X3, roots),
# roots.x4=cbind(regr2$X4, roots),
# roots.d4=cbind(DU4, roots),
# roots.sq=cbind(roots, roots),
# Broots.x1=cbind(bigRoots, regr2$X1),
# Broots.x3=cbind(bigRoots, regr2$X3),
# Broots.x4=cbind(bigRoots, regr2$X4))
#
# xlist <- lapply(xlist,
# apply,
# 1,
# function(x){
# tcrossprod(x[1:length(b)], x[(length(b)+1):(2*length(b))])+
# tcrossprod(x[(length(b)+1):(2*length(b))], x[1:length(b)])
# }
# )
# xlist<-lapply(xlist,t)
# xlist$roots.d4 <- xlist$roots.d4/2
#
#2nd deriv of p4
# DDp4Db <- ((-sqrt(2)/2) * p$p4 *d4 * x24px24bx24 - FirthExtra$x24x24*(d4^2))/(2*p$p4^2)
DDp4Db <- t(regr2$Z * (y==3)*drop(((-sqrt(2)/2) * p$p4 *d4 * (regr2$Z %*% b) - (d4^2))/(2*p$p4^2))) %*% regr2$Z
##2nd deriv of p3 (same as before)
# DDp3Db <- ((1/(sqrt(2))) * p$p3 * d4 * x24px24bx24 -FirthExtra$x24x24 * d4^2)/(2*p$p3^2)
DDp3Db <- t(regr2$Z * (y==2)*drop(((1/(sqrt(2))) * p$p3 * d4 * (regr2$Z %*% b) - d4^2)/(2*p$p3^2))) %*% regr2$Z
# ### D/Db of (Dp2/Db) / p2 is 10 parts####
# ddp2db11 <- -(d2^2 * FirthExtra$x11x11)/(p$p2^2*denom2^2) - (d2*in2*FirthExtra$x11x11)/(p$p2 * denom2^3)
# ddp2db12 <- (d2^2 * p$p3*FirthExtra$x11x13)/(p$p2^2*denom2^2) +
# (d2*p$p3*in2*FirthExtra$x11x13)/(p$p2 * denom2^3)
# ddp2db13 <- (d2^2 * p$p4*FirthExtra$x11x14)/(p$p2^2*denom2^2) +
# (d2*p$p4*in2*FirthExtra$x11x14)/(p$p2 * denom2^3)
# ddp2db14 <- d2*xlist$roots.x1 /(2*p$p2*denom2^3)+
# d2^2 *xlist$Broots.x1/(p$p2^2*denom2) +
# d2*in2*xlist$Broots.x1/(p$p2*denom2^2)
# ddp2db22 <- -(d2^2*p$p3^2*FirthExtra$x13x13)/(p$p2^2*denom2^2) - (d2*p$p3^2*in2*FirthExtra$x13x13)/(p$p2*denom2^3)
# ddp2db23 <- -(d2^2*p$p3*p$p4*FirthExtra$x13x14)/(p$p2^2*denom2^2) -
# (d2*p$p3*p$p4*in2*FirthExtra$x13x14)/(p$p2*denom2^3)
# ddp2db24 <- -(d2*d4*FirthExtra$x13x24/(sqrt(2)*p$p2*denom2)) -
# d2*p$p3*xlist$roots.x3/(2*p$p2*denom2^3) -
# d2^2*p$p3 * xlist$Broots.x3/(p$p2^2*denom2) -
# d2*p$p3*in2* xlist$Broots.x3/(p$p2 * denom2^2)
# ddp2db33 <- -(d2^2*p$p4^2*FirthExtra$x14x14)/(p$p2^2 * (denom2^2)) -
# (d2*p$p4^2 * in2* FirthExtra$x14x14)/(p$p2*denom2^3)
# ddp2db34 <- (d2 * d4* FirthExtra$x14x24)/(sqrt(2)*p$p2*denom2)-
# (d2*p$p4*xlist$roots.x4)/(2*p$p2*denom2^3)-
# (d2^2*p$p4*xlist$Broots.x4)/(p$p2^2*denom2)-
# (d2*p$p4*in2*xlist$Broots.x4)/(p$p2*denom2^2)
# ddp2db44 <- -(d2^2 * Broots.sq)/p$p2^2 -
# d2*in2*Broots.sq/(p$p2*denom2) +
# d2/p$p2 * ( (3*in2 * roots.sq)/(4 *denom2^5) -
# xlist$roots.d4/(denom2^3)-
# in2*(2*d4^2*FirthExtra$x24x24 + d4*p$p3*x24px24bx24/sqrt(2)-d4*p$p4*x24px24bx24/sqrt(2))/(2*denom2^3)+
# (d4*u$u13*x24px24bx24/(2*sqrt(2)) - d4*u$u14*x24px24bx24/(2*sqrt(2)))/(denom2)
# )
# DDp2Db <- ddp2db11 +
# ddp2db12 +
# ddp2db13 +
# ddp2db14 +
# ddp2db22 +
# ddp2db23 +
# ddp2db24 +
# ddp2db33 +
# ddp2db34 +
# ddp2db44
ddp2db11 <- t(regr2$X1 * (y==2)*drop( -(d2^2)/(p$p2^2*denom2^2) - (d2*in2)/(p$p2 * denom2^3))) %*% regr2$X1
ddp2db12 <- t(regr2$X1 * (y==2)*drop( (d2^2 * p$p3)/(p$p2^2*denom2^2) +(d2*p$p3*in2)/(p$p2 * denom2^3))) %*% regr2$X3+
t(t(regr2$X1 * (y==2)*drop( (d2^2 * p$p3)/(p$p2^2*denom2^2) +(d2*p$p3*in2)/(p$p2 * denom2^3))) %*% regr2$X3)
ddp2db13 <- t(regr2$X1 * (y==2)*drop( (d2^2 * p$p4)/(p$p2^2*denom2^2) + (d2*p$p4*in2)/(p$p2 * denom2^3))) %*% regr2$X4+
t(t(regr2$X1 * (y==2)*drop( (d2^2 * p$p4)/(p$p2^2*denom2^2) + (d2*p$p4*in2)/(p$p2 * denom2^3))) %*% regr2$X4)
ddp2db14 <- t(regr2$X1 * (y==2)*drop(d2/(2*p$p2*denom2^3))) %*% roots + t(t(regr2$X1 * (y==2)*drop(d2/(2*p$p2*denom2^3))) %*% roots)+
t(regr2$X1 * (y==2)*drop(d2^2/(p$p2^2*denom2))) %*% bigRoots + t( t(regr2$X1 * (y==2)*drop(d2^2/(p$p2^2*denom2))) %*% bigRoots)+
t(regr2$X1 * (y==2)*drop(d2*in2/(p$p2*denom2^2))) %*% bigRoots + t(t(regr2$X1 * (y==2)*drop(d2*in2/(p$p2*denom2^2))) %*% bigRoots )
ddp2db22 <- t(regr2$X3 * (y==2)*drop( -(d2^2*p$p3^2)/(p$p2^2*denom2^2) - (d2*p$p3^2*in2)/(p$p2*denom2^3))) %*% regr2$X3
ddp2db23 <- t(regr2$X3 * (y==2)*drop(-(d2^2*p$p3*p$p4)/(p$p2^2*denom2^2) - (d2*p$p3*p$p4*in2)/(p$p2*denom2^3))) %*% regr2$X4 +
t( t(regr2$X3 * (y==2)*drop(-(d2^2*p$p3*p$p4)/(p$p2^2*denom2^2) - (d2*p$p3*p$p4*in2)/(p$p2*denom2^3))) %*% regr2$X4 )
ddp2db24 <- t(regr2$X3 * (y==2)*drop(-(d2*d4/(sqrt(2)*p$p2*denom2)))) %*% regr2$Z + t(t(regr2$X3 * (y==2)*drop(-(d2*d4/(sqrt(2)*p$p2*denom2)))) %*% regr2$Z) -
(t(regr2$X3 * (y==2)*drop( d2*p$p3/(2*p$p2*denom2^3))) %*% roots +t( t(regr2$X3 * (y==2)*drop( d2*p$p3/(2*p$p2*denom2^3))) %*% roots) )-
(t(regr2$X3 * (y==2)*drop( d2^2*p$p3/(p$p2^2*denom2) )) %*% bigRoots + t(t(regr2$X3 * (y==2)*drop( d2^2*p$p3/(p$p2^2*denom2) )) %*% bigRoots)) -
(t(regr2$X3 * (y==2)*drop(d2*p$p3*in2/(p$p2 * denom2^2))) %*% bigRoots + t(t(regr2$X3 * (y==2)*drop(d2*p$p3*in2/(p$p2 * denom2^2))) %*% bigRoots))
ddp2db33 <- t(regr2$X4 * (y==2)*drop( -(d2^2*p$p4^2)/(p$p2^2 * (denom2^2)) - (d2*p$p4^2 * in2)/(p$p2*denom2^3))) %*% regr2$X4
ddp2db34 <- (t(regr2$X4* (y==2)*drop( (d2 * d4)/(sqrt(2)*p$p2*denom2))) %*% regr2$Z + t(t(regr2$X4* (y==2)*drop( (d2 * d4)/(sqrt(2)*p$p2*denom2))) %*% regr2$Z) )-
(t(regr2$X4 * (y==2)*drop((d2*p$p4)/(2*p$p2*denom2^3))) %*% roots + t( t(regr2$X4 * (y==2)*drop((d2*p$p4)/(2*p$p2*denom2^3))) %*% roots))-
(t(regr2$X4 * (y==2)*drop((d2^2*p$p4)/(p$p2^2*denom2))) %*% bigRoots + t(t(regr2$X4 * (y==2)*drop((d2^2*p$p4)/(p$p2^2*denom2))) %*% bigRoots))-
(t(regr2$X4 * (y==2)*drop((d2*p$p4*in2)/(p$p2*denom2^2))) %*% bigRoots + t(t(regr2$X4 * (y==2)*drop((d2*p$p4*in2)/(p$p2*denom2^2))) %*% bigRoots))
ddp2db44 <- t(bigRoots * (y==2)*drop(-(d2^2)/p$p2^2 -d2*in2/(p$p2*denom2))) %*% bigRoots +
( t(roots * (y==2)*drop((3*in2*d2/p$p2)/(4 *denom2^5))) %*% roots -
t(roots * (y==2)*drop( (d2/p$p2 )/(denom2^3))) %*% DU4 -
t(regr2$Z * (y==2)*drop(d2/p$p2 *in2*(2*d4^2 + d4*p$p3*(regr2$Z%*%b)/sqrt(2)-d4*p$p4*(regr2$Z%*%b)/sqrt(2))/(2*denom2^3))) %*% regr2$Z +
t(regr2$Z * (y==2)*drop(d2/p$p2 *(d4*u$u13*(regr2$Z %*% b)/(2*sqrt(2)) - d4*u$u14*(regr2$Z %*% b)/(2*sqrt(2)))/(denom2) )) %*% regr2$Z
)
DDp2Db.y2 <- ddp2db11 +
ddp2db12 +
ddp2db13 +
ddp2db14 +
ddp2db22 +
ddp2db23 +
ddp2db24 +
ddp2db33 +
ddp2db34 +
ddp2db44
ddp2db11 <- t(regr2$X1 * (y==3)*drop( -(d2^2)/(p$p2^2*denom2^2) - (d2*in2)/(p$p2 * denom2^3))) %*% regr2$X1
ddp2db12 <- t(regr2$X1 * (y==3)*drop( (d2^2 * p$p3)/(p$p2^2*denom2^2) +(d2*p$p3*in2)/(p$p2 * denom2^3))) %*% regr2$X3+
t(t(regr2$X1 * (y==3)*drop( (d2^2 * p$p3)/(p$p2^2*denom2^2) +(d2*p$p3*in2)/(p$p2 * denom2^3))) %*% regr2$X3)
ddp2db13 <- t(regr2$X1 * (y==3)*drop( (d2^2 * p$p4)/(p$p2^2*denom2^2) + (d2*p$p4*in2)/(p$p2 * denom2^3))) %*% regr2$X4+
t(t(regr2$X1 * (y==3)*drop( (d2^2 * p$p4)/(p$p2^2*denom2^2) + (d2*p$p4*in2)/(p$p2 * denom2^3))) %*% regr2$X4)
ddp2db14 <- t(regr2$X1 * (y==3)*drop(d2/(2*p$p2*denom2^3))) %*% roots + t(t(regr2$X1 * (y==3)*drop(d2/(2*p$p2*denom2^3))) %*% roots)+
t(regr2$X1 * (y==3)*drop(d2^2/(p$p2^2*denom2))) %*% bigRoots + t( t(regr2$X1 * (y==3)*drop(d2^2/(p$p2^2*denom2))) %*% bigRoots)+
t(regr2$X1 * (y==3)*drop(d2*in2/(p$p2*denom2^2))) %*% bigRoots + t(t(regr2$X1 * (y==3)*drop(d2*in2/(p$p2*denom2^2))) %*% bigRoots )
ddp2db22 <- t(regr2$X3 * (y==3)*drop( -(d2^2*p$p3^2)/(p$p2^2*denom2^2) - (d2*p$p3^2*in2)/(p$p2*denom2^3))) %*% regr2$X3
ddp2db23 <- t(regr2$X3 * (y==3)*drop(-(d2^2*p$p3*p$p4)/(p$p2^2*denom2^2) - (d2*p$p3*p$p4*in2)/(p$p2*denom2^3))) %*% regr2$X4 +
t( t(regr2$X3 * (y==3)*drop(-(d2^2*p$p3*p$p4)/(p$p2^2*denom2^2) - (d2*p$p3*p$p4*in2)/(p$p2*denom2^3))) %*% regr2$X4 )
ddp2db24 <- t(regr2$X3 * (y==3)*drop(-(d2*d4/(sqrt(2)*p$p2*denom2)))) %*% regr2$Z + t(t(regr2$X3 * (y==3)*drop(-(d2*d4/(sqrt(2)*p$p2*denom2)))) %*% regr2$Z) -
(t(regr2$X3 * (y==3)*drop( d2*p$p3/(2*p$p2*denom2^3))) %*% roots +t( t(regr2$X3 * (y==3)*drop( d2*p$p3/(2*p$p2*denom2^3))) %*% roots) )-
(t(regr2$X3 * (y==3)*drop( d2^2*p$p3/(p$p2^2*denom2) )) %*% bigRoots + t(t(regr2$X3 * (y==3)*drop( d2^2*p$p3/(p$p2^2*denom2) )) %*% bigRoots)) -
(t(regr2$X3 * (y==3)*drop(d2*p$p3*in2/(p$p2 * denom2^2))) %*% bigRoots + t(t(regr2$X3 * (y==3)*drop(d2*p$p3*in2/(p$p2 * denom2^2))) %*% bigRoots))
ddp2db33 <- t(regr2$X4 * (y==3)*drop( -(d2^2*p$p4^2)/(p$p2^2 * (denom2^2)) - (d2*p$p4^2 * in2)/(p$p2*denom2^3))) %*% regr2$X4
ddp2db34 <- (t(regr2$X4* (y==3)*drop( (d2 * d4)/(sqrt(2)*p$p2*denom2))) %*% regr2$Z + t(t(regr2$X4* (y==3)*drop( (d2 * d4)/(sqrt(2)*p$p2*denom2))) %*% regr2$Z) )-
(t(regr2$X4 * (y==3)*drop((d2*p$p4)/(2*p$p2*denom2^3))) %*% roots + t( t(regr2$X4 * (y==3)*drop((d2*p$p4)/(2*p$p2*denom2^3))) %*% roots))-
(t(regr2$X4 * (y==3)*drop((d2^2*p$p4)/(p$p2^2*denom2))) %*% bigRoots + t(t(regr2$X4 * (y==3)*drop((d2^2*p$p4)/(p$p2^2*denom2))) %*% bigRoots))-
(t(regr2$X4 * (y==3)*drop((d2*p$p4*in2)/(p$p2*denom2^2))) %*% bigRoots + t(t(regr2$X4 * (y==3)*drop((d2*p$p4*in2)/(p$p2*denom2^2))) %*% bigRoots))
ddp2db44 <- t(bigRoots * (y==3)*drop(-(d2^2)/p$p2^2 -d2*in2/(p$p2*denom2))) %*% bigRoots +
( t(roots * (y==3)*drop((3*in2*d2/p$p2)/(4 *denom2^5))) %*% roots -
t(roots * (y==3)*drop( (d2/p$p2 )/(denom2^3))) %*% DU4 -
t(regr2$Z * (y==3)*drop(d2/p$p2 *in2*(2*d4^2 + d4*p$p3*(regr2$Z%*%b)/sqrt(2)-d4*p$p4*(regr2$Z%*%b)/sqrt(2))/(2*denom2^3))) %*% regr2$Z +
t(regr2$Z * (y==3)*drop(d2/p$p2 *(d4*u$u13*(regr2$Z %*% b)/(2*sqrt(2)) - d4*u$u14*(regr2$Z %*% b)/(2*sqrt(2)))/(denom2) )) %*% regr2$Z
)
DDp2Db.y3 <- ddp2db11 +
ddp2db12 +
ddp2db13 +
ddp2db14 +
ddp2db22 +
ddp2db23 +
ddp2db24 +
ddp2db33 +
ddp2db34 +
ddp2db44
### D/Db of (Dp1/Db)/ p1 is also 10 parts####
# ddp1db11 <- -(d2^2 * FirthExtra$x11x11)/(p$p1^2*denom2^2) + (d2*in2*FirthExtra$x11x11)/(p$p1 * denom2^3)
# ddp1db12 <- (d2^2 * p$p3*FirthExtra$x11x13)/((p$p1^2) * (denom2^2)) -
# (d2*p$p3*in2*FirthExtra$x11x13)/(p$p1 * denom2^3) #poss
# ddp1db13 <- (d2^2 * p$p4*FirthExtra$x11x14)/(p$p1^2*denom2^2) -
# (d2*p$p4*in2*FirthExtra$x11x14)/(p$p1 * denom2^3)
# ddp1db14 <- -d2*xlist$roots.x1 /(2*p$p1*denom2^3) +
# d2^2 *xlist$Broots.x1/(p$p1^2*denom2) -
# d2*in2*xlist$Broots.x1/(p$p1*denom2^2)
# ddp1db22 <- -(d2^2*p$p3^2*FirthExtra$x13x13)/(p$p1^2*denom2^2) +
# (d2*p$p3^2*in2*FirthExtra$x13x13)/(p$p1*denom2^3) #inter
# ddp1db23 <- -(d2^2*p$p3*p$p4*FirthExtra$x13x14)/(p$p1^2*denom2^2) +
# (d2*p$p3*p$p4*in2*FirthExtra$x13x14)/(p$p1*denom2^3)
# ddp1db24 <- (d2*d4*FirthExtra$x13x24/(sqrt(2)*p$p1*denom2)) +
# d2*p$p3*xlist$roots.x3/(2*p$p1*denom2^3) -
# d2^2*p$p3 * xlist$Broots.x3/(p$p1^2*denom2) +
# d2*p$p3*in2* xlist$Broots.x3/(p$p1 * denom2^2)
# ddp1db33 <- -(d2^2*p$p4^2*FirthExtra$x14x14)/(p$p1^2 * (denom2^2)) +
# (d2*p$p4^2 * in2* FirthExtra$x14x14)/(p$p1*denom2^3)
# ddp1db34 <- -(d2 * d4* FirthExtra$x14x24)/(sqrt(2)*p$p1*denom2)+
# (d2*p$p4*xlist$roots.x4)/(2*p$p1*denom2^3)-
# (d2^2*p$p4*xlist$Broots.x4)/(p$p1^2*denom2)+
# (d2*p$p4*in2*xlist$Broots.x4)/(p$p1*denom2^2)
# ddp1db44 <- -(d2^2 * Broots.sq)/p$p1^2 +
# d2*in2*Broots.sq/(p$p1*denom2) -
# d2/p$p1 * ( (3*in2 * roots.sq)/(4 *denom2^5) -
# xlist$roots.d4/(denom2^3)-
# in2*(2*d4^2*FirthExtra$x24x24 + d4*p$p3*x24px24bx24/sqrt(2)-d4*p$p4*x24px24bx24/sqrt(2))/(2*denom2^3)+
# (d4*u$u13*x24px24bx24/(2*sqrt(2)) - d4*u$u14*x24px24bx24/(2*sqrt(2)))/(denom2)
# )
# DDp1Db <- ddp1db11 +
# ddp1db12 +
# ddp1db13 +
# ddp1db14 +
# ddp1db22 +
# ddp1db23 +
# ddp1db24 +
# ddp1db33 +
# ddp1db34 +
# ddp1db44
### D/Db of (Dp1/Db)/ p1 is also 10 parts####
ddp1db11A <- t(regr2$X1 *(y==1)*drop(-(d2^2)/(p$p1^2*denom2^2) + (d2*in2)/(p$p1 * denom2^3))) %*% regr2$X1
ddp1db12A <- t(regr2$X1 *(y==1)*drop((d2^2 * p$p3)/((p$p1^2) * (denom2^2)) - (d2*p$p3*in2)/(p$p1 * denom2^3))) %*% regr2$X3 +
t(t(regr2$X1 *(y==1)*drop((d2^2 * p$p3)/((p$p1^2) * (denom2^2)) - (d2*p$p3*in2)/(p$p1 * denom2^3))) %*% regr2$X3)
ddp1db13A <- t(regr2$X1 *(y==1)*drop((d2^2 * p$p4)/(p$p1^2*denom2^2) - (d2*p$p4*in2)/(p$p1 * denom2^3))) %*% regr2$X4+
t(t(regr2$X1 *(y==1)*drop((d2^2 * p$p4)/(p$p1^2*denom2^2) - (d2*p$p4*in2)/(p$p1 * denom2^3))) %*% regr2$X4)
ddp1db14A <- (t(regr2$X1 *(y==1)*drop(-d2/(2*p$p1*denom2^3))) %*% roots + t(t(regr2$X1 *(y==1)*drop(-d2/(2*p$p1*denom2^3))) %*% roots)) +
(t(regr2$X1 *(y==1)*drop(d2^2/(p$p1^2*denom2) -d2*in2/(p$p1*denom2^2))) %*% bigRoots+
t(t(regr2$X1 *(y==1)*drop(d2^2 /(p$p1^2*denom2) -d2*in2/(p$p1*denom2^2))) %*% bigRoots))
ddp1db22A <- t(regr2$X3 *(y==1)*drop(-(d2^2*p$p3^2)/(p$p1^2*denom2^2) +(d2*p$p3^2*in2)/(p$p1*denom2^3))) %*% regr2$X3
ddp1db23A <- (t(regr2$X3 *(y==1)*drop(-(d2^2*p$p3*p$p4)/(p$p1^2*denom2^2) + (d2*p$p3*p$p4*in2)/(p$p1*denom2^3))) %*% regr2$X4 +
t(t(regr2$X3 * (y==1)*drop(-(d2^2*p$p3*p$p4)/(p$p1^2*denom2^2) + (d2*p$p3*p$p4*in2)/(p$p1*denom2^3))) %*% regr2$X4))
ddp1db24A <- (t(regr2$X3 * (y==1)*drop((d2*d4/(sqrt(2)*p$p1*denom2)))) %*% regr2$Z + t(t(regr2$X3 * (y==1)*drop((d2*d4/(sqrt(2)*p$p1*denom2)))) %*% regr2$Z )) +
(t(regr2$X3 * (y==1)*drop(d2*p$p3/(2*p$p1*denom2^3))) %*% roots + t(t(regr2$X3 * (y==1)*drop(d2*p$p3/(2*p$p1*denom2^3))) %*% roots)) -
(t(regr2$X3 * (y==1)*drop(d2^2*p$p3/(p$p1^2*denom2))) %*% bigRoots + t(t(regr2$X3 * (y==1)*drop(d2^2*p$p3/(p$p1^2*denom2))) %*% bigRoots)) +
(t(regr2$X3 * (y==1)*drop(d2*p$p3*in2/(p$p1 * denom2^2)))%*% bigRoots + t(t(regr2$X3 * (y==1)*drop(d2*p$p3*in2/(p$p1 * denom2^2)))%*% bigRoots ))
ddp1db33A <- t(regr2$X4 * (y==1)*drop(-(d2^2*p$p4^2)/(p$p1^2 * (denom2^2)) + (d2*p$p4^2 * in2)/(p$p1*denom2^3))) %*% regr2$X4
ddp1db34A <- (t(regr2$X4* (y==1)*drop(-(d2 * d4)/(sqrt(2)*p$p1*denom2))) %*% regr2$Z+ t(t(regr2$X4* (y==1)*drop(-(d2 * d4)/(sqrt(2)*p$p1*denom2))) %*% regr2$Z))+
(t(regr2$X4 * (y==1)*drop((d2*p$p4)/(2*p$p1*denom2^3))) %*% roots + t(t(regr2$X4 * (y==1)*drop((d2*p$p4)/(2*p$p1*denom2^3))) %*% roots))-
(t(regr2$X4 * (y==1)*drop((d2^2*p$p4)/(p$p1^2*denom2))) %*% bigRoots + t(t(regr2$X4 * (y==1)*drop((d2^2*p$p4)/(p$p1^2*denom2))) %*% bigRoots))+
(t(regr2$X4 * (y==1)*drop((d2*p$p4*in2)/(p$p1*denom2^2))) %*% bigRoots + t(t(regr2$X4 * (y==1)*drop((d2*p$p4*in2)/(p$p1*denom2^2))) %*% bigRoots))
ddp1db44A <- t(bigRoots * (y==1)*drop(-(d2^2 )/p$p1^2)) %*% bigRoots+
t(bigRoots* (y==1)*drop(d2*in2/(p$p1*denom2))) %*% bigRoots +
t(roots *(y==1)*drop( (-d2/p$p1 * 3*in2 )/(4 *denom2^5))) %*% roots +
t(roots *(y==1)*drop( (d2/p$p1 )/(denom2^3))) %*% DU4 +
t(regr2$Z * (y==1)*drop( d2/p$p1 * in2*(2*d4^2 + d4*p$p3*(regr2$Z%*%b)/sqrt(2)-d4*p$p4*(regr2$Z%*%b)/sqrt(2))/(2*denom2^3))) %*% regr2$Z+
t(regr2$Z * (y==1)*drop(- d2/p$p1 * (d4*u$u13*(regr2$Z%*%b)/(2*sqrt(2)) - d4*u$u14*(regr2$Z%*%b)/(2*sqrt(2)))/(denom2))) %*% regr2$Z
DDp1DbA <- ddp1db11A +
ddp1db12A +
ddp1db13A +
ddp1db14A +
ddp1db22A +
ddp1db23A +
ddp1db24A +
ddp1db33A +
ddp1db34A +
ddp1db44A
# DDB <- (y==3)*(DDp4Db+DDp2Db)+
# (y==2)*(DDp3Db+DDp2Db)+
# (y==1)*(DDp1Db)
DDB <-(DDp4Db+DDp2Db.y3)+
(DDp3Db+DDp2Db.y2)+
(DDp1DbA)
}
}
ans <- DDB
# ans <- colSums(DDB)
# ans <- matrix(ans, nrow=length(b))
return(ans)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.