benchmarks/BED12-blockInfo-benchmark.md

title: "Fastest way to calculate BED12 blocks for UCSCData objects" author: "Charles Plessy" date: 'June 29, 2021' output: html_document: keep_md: yes editor_options: chunk_output_type: console

In the BED12 format, the position of each box in the object is encoded in the blockCount, blockSize and blockStarts columns.

In UCSCData track objects of the rtracklayer package, the information is encoded as an IRangesList metadata column, where each element has one IRanges object representing the blocks.

In CAGEr's TagClusters objects, the position of the central blocks is represented by the quantile information columns.

The problem here is to create this IRanges list in a computationally efficient way in CAGEr's exportToTrack function.

The best approach, f.mat.direct is not exactly fast, but is 5 × faster than my original attempt (f.grline).

suppressPackageStartupMessages(library("GenomicRanges"))
suppressPackageStartupMessages(library("CAGEr"))
tc <- CAGEr::exampleCAGEexp |> CAGEr::tagClustersGR(1)
tcl <- split(tc, seq_along(tc))
decoded.mat <- rbind(width(tc), decode(tc$q_0.1), decode(tc$q_0.9))
# Operate directly on each line

f.grline <- function(grline) {
  # A GRanges line is a GRanges object of length 1
  # This function computes a blocks value for each line
  qLow_value <- decode(grline$q_0.1)
  qUp_value  <- decode(grline$q_0.9)
  ir <- IRanges()                      |>
    c( if(qLow_value != 1) IRanges(1)) |>
    c( IRanges(qLow_value, qUp_value)) |>
    c( if(qUp_value != width(grline)) IRanges(width(grline)))
  ir
}

# Decode the Rle objects once for all and loop on each entry

f.mat.direct <- function(x) {
  width_value <- x[1]
  qLow_value <- x[2]
  qUp_value  <- x[3]
  ir <- IRanges()                      |>
    c( if(qLow_value != 1) IRanges(1)) |>
    c( IRanges(qLow_value, qUp_value)) |>
    c( if(qUp_value != width_value) IRanges(width_value))
}

# Same but try to call the IRanges constructor only once.

f.mat.viaString <- function(x) {
  width_value <- x[1]
  qLow_value <- x[2]
  qUp_value  <- x[3]
  str <- c(
    c( if(qLow_value != 1) "1"),
    c( paste0(qLow_value, "-", qUp_value)),
    c( if(qUp_value != width_value) width_value)
  )
  IRanges(str)
}
tc[1]
## TagClusters object with 1 range and 6 metadata columns:
##     seqnames    ranges strand |           score   nr_ctss dominant_ctss tpm.dominant_ctss q_0.1 q_0.9
##        <Rle> <IRanges>  <Rle> |           <Rle> <integer>     <integer>             <Rle> <Rle> <Rle>
##   1    chr17  26050540      + | 22.310089406231         1      26050540   22.310089406231     1     1
##   -------
##   seqinfo: 1 sequence from an unspecified genome; no seqlengths
microbenchmark::microbenchmark(f.grline(tcl[[1]]), f.mat.direct(decoded.mat[,1]), f.mat.viaString(decoded.mat[,1]), times = 100)
## Unit: milliseconds
##                               expr      min        lq      mean    median        uq       max neval
##                 f.grline(tcl[[1]]) 9.178579  9.645029 10.704038 10.284728 11.355642 15.512259   100
##     f.mat.direct(decoded.mat[, 1]) 2.810769  2.961396  3.528324  3.302803  3.606683  9.024574   100
##  f.mat.viaString(decoded.mat[, 1]) 9.342554 10.126850 11.103980 10.933802 11.565727 22.582231   100
tc[5]
## TagClusters object with 1 range and 6 metadata columns:
##     seqnames            ranges strand |            score   nr_ctss dominant_ctss tpm.dominant_ctss q_0.1 q_0.9
##        <Rle>         <IRanges>  <Rle> |            <Rle> <integer>     <integer>             <Rle> <Rle> <Rle>
##   5    chr17 26453632-26453708      + | 1023.81202126363        16      26453667  288.917306039892    30    72
##   -------
##   seqinfo: 1 sequence from an unspecified genome; no seqlengths
microbenchmark::microbenchmark(f.grline(tcl[[5]]), f.mat.direct(decoded.mat[,5]), f.mat.viaString(decoded.mat[,5]), times = 100)
## Unit: milliseconds
##                               expr       min        lq      mean    median        uq       max neval
##                 f.grline(tcl[[5]]) 10.015783 10.576726 11.313155 11.094960 12.048345 14.515133   100
##     f.mat.direct(decoded.mat[, 5])  3.665505  3.838581  4.120408  3.974128  4.377097  5.110636   100
##  f.mat.viaString(decoded.mat[, 5])  9.529413 10.062541 10.744386 10.541201 11.260659 13.957480   100


charles-plessy/CAGEr documentation built on Oct. 27, 2024, 10:11 p.m.