R/methods-CellDataSet.R

Defines functions checkSizeFactors reducedDimS `reducedDimS<-` reducedDimW `reducedDimK<-` reducedDimK `reducedDimW<-` reducedDimA `reducedDimA<-` minSpanningTree `minSpanningTree<-` cellPairwiseDistances `cellPairwiseDistances<-`

Documented in cellPairwiseDistances minSpanningTree reducedDimA reducedDimK reducedDimS reducedDimW

#' Methods for the CellDataSet class
#' @name CellDataSet-methods
#' @docType methods
#' @rdname CellDataSet-methods
#' @param object The CellDataSet object
setValidity( "CellDataSet", function( object ) {
#   if( any( counts(object) < 0 ) )
#     return( "the count data contains negative values" )
  TRUE
} )

#' @rdname CellDataSet-methods
#' @aliases CellDataSet,ANY,ANY-method
setMethod("sizeFactors", signature(object="CellDataSet"), function(object) {
  sf <- pData(object)$Size_Factor
  names( sf ) <- colnames( exprs(object) )
  sf})   

#' @rdname CellDataSet-methods
#' @aliases CellDataSet,ANY,ANY-method
#' @param value A vector of size factors, with length equal to the cells in object
setReplaceMethod("sizeFactors", signature(object="CellDataSet", value="numeric"), setSizeFactors <- function(object, value) {
  pData(object)$Size_Factor <- value
  validObject( object )
  object
})   


#' @rdname CellDataSet-methods
#' @param locfunc A function applied to the geometric-mean-scaled expression values to derive the size factor.
#' @param ... Additional arguments to be passed to estimateSizeFactorsForMatrix
#' @importFrom BiocGenerics sizeFactors<-
#' @importFrom BiocGenerics estimateSizeFactors
#' @aliases CellDataSet,ANY,ANY-method
setMethod("estimateSizeFactors", 
          signature(object="CellDataSet"),
function( object, locfunc=median, ... ) 
{
  sizeFactors(object) <- estimateSizeFactorsForMatrix(exprs(object), locfunc=locfunc, ...)
  object
})

#' @rdname CellDataSet-methods
#' @param modelFormulaStr A model formula, passed as a string, specifying how to group the cells prior to estimated dispersion. 
#' The default groups all cells together. 
#' @param relative_expr Whether to transform expression into relative values
#' @param min_cells_detected Only include genes detected above lowerDetectionLimit in at least this many cells in the dispersion calculation
#' @param remove_outliers Whether to remove outliers (using Cook's distance) when estimating dispersions
#' @param cores The number of cores to use for computing dispersions
#' @aliases CellDataSet,ANY,ANY-method
#' @importFrom BiocGenerics sizeFactors
#' @importFrom BiocGenerics estimateDispersions
setMethod("estimateDispersions", 
          signature(object="CellDataSet"), 
function(object, modelFormulaStr="~ 1", relative_expr=TRUE, min_cells_detected=1, remove_outliers=TRUE, cores=1,...)
{
  dispModelName="blind"
  stopifnot( is( object, "CellDataSet" ) )
  
  if(!(identical("negbinomial.size", object@expressionFamily@vfamily) || identical("negbinomial", object@expressionFamily@vfamily))){
    stop("Error: estimateDispersions only works, and is only needed, when you're using a CellDataSet with a negbinomial or negbinomial.size expression family")
  }

  if( any( is.na( sizeFactors(object) ) ) )
    stop( "NAs found in size factors. Have you called 'estimateSizeFactors'?" )
  
  if( length(list(...)) != 0 )
    warning( "in estimateDispersions: Ignoring extra argument(s)." )
  
  # Remove results from previous fits
  object@dispFitInfo = new.env( hash=TRUE )
  
  # if (isSparseMatrix(exprs(object))){
  #   sp_mat <- asSlamMatrix(exprs(object))
  #   nzGenes <- rowapply_simple_triplet_matrix(sp_mat, function(x) { sum(round(as.vector(x)) > object@lowerDetectionLimit) })
  # }else{
  #   nzGenes <- apply(exprs(object), 1, function(x) { sum(round(as.vector(x)) > object@lowerDetectionLimit) 
  #   
  # }

  dfi <- estimateDispersionsForCellDataSet(object, 
                                           modelFormulaStr, 
                                           relative_expr, 
                                           min_cells_detected,
                                           remove_outliers,
                                           cores)
  object@dispFitInfo[[dispModelName]] <- dfi
  
  validObject( object )
  object
})

###################

#' @importFrom BiocGenerics sizeFactors
checkSizeFactors <- function(cds)
{
  if (cds@expressionFamily@vfamily %in% c("negbinomial", "negbinomial.size"))
  {
    if (is.null(sizeFactors(cds))){
      stop("Error: you must call estimateSizeFactors() before calling this function.")
    }
    if (sum(is.na(sizeFactors(cds))) > 0){
      stop("Error: one or more cells has a size factor of NA.")
    }
  }
}

#' Retrieves the coordinates of each cell in the reduced-dimensionality space generated by calls to 
#' reduceDimension.
#'
#' Reducing the dimensionality of the expression data is a core step in the Monocle 
#' workflow. After you call reduceDimension(), this function will return the new
#' coordinates of your cells in the reduced space. 
#' @param cds A CellDataSet object.
#' @return A matrix, where rows are cell coordinates and columns correspond to dimensions of the 
#' reduced space.
#' @export
#' @examples
#' \dontrun{
#' S <- reducedDimS(HSMM)
#' }
reducedDimS <- function( cds ) {
  stopifnot( is( cds, "CellDataSet" ) )
  cds@reducedDimS
}   

#' Set embedding coordinates of each cell in a CellDataSet.  
#' 
#' This function sets the coordinates of each cell in a new
#' (reduced-dimensionality) space. Not intended to be called directly.
#'
#' @param cds A CellDataSet object.
#' @param value A matrix of coordinates specifying each cell's position in the reduced-dimensionality space.
#' @return An update CellDataSet object
#' @examples
#' \dontrun{
#' cds <- reducedDimS(S)
#' }
`reducedDimS<-` <- function( cds, value ) {
  stopifnot( is( cds, "CellDataSet" ) )
  cds@reducedDimS <- value
  validObject( cds )
  cds
}   

#' Get the whitened expression values for a CellDataSet. 
#' 
#' Retrieves the expression values for each cell (as a matrix) after whitening 
#' during dimensionality reduction.
#'
#' @param cds A CellDataSet object.
#' @return A matrix, where each row is a set of whitened expression values for a feature and columns are cells.
#' @export
#' @examples
#' \dontrun{
#' W <- reducedDimW(HSMM)
#' }
reducedDimW <- function( cds ) {
  stopifnot( is( cds, "CellDataSet" ) )
  cds@reducedDimW
}   

#' @title Sets the the whitening matrix during independent component analysis.
#'
#' @description Sets the the whitening matrix during independent component analysis.
#'
#' @param cds A CellDataSet object.
#' @param value a numeric matrix
#' @return A matrix, where each row is a set of whitened expression values for a feature and columns are cells.
#' @docType methods
#' @examples
#' \dontrun{
#' cds <- reducedDimK(K)
#' }
`reducedDimK<-` <- function( cds, value ) {
  stopifnot( is( cds, "CellDataSet" ) )
  cds@reducedDimK <- value
  validObject( cds )
  cds
}   

#' Retrieves the the whitening matrix during independent component analysis.
#' 
#' @param cds A CellDataSet object.
#' @return A matrix, where each row is a set of whitened expression values for a feature and columns are cells.
#' @docType methods
#' @export
#' @examples
#' \dontrun{
#' K <- reducedDimW(HSMM)
#' }
reducedDimK <- function( cds ) {
  stopifnot( is( cds, "CellDataSet" ) )
  cds@reducedDimK
}   

#' Sets the whitened expression values for each cell prior to independent component analysis. Not intended to be called directly.
#'
#' @param cds A CellDataSet object.
#' @param value A whitened expression data matrix
#' @return An updated CellDataSet object
#' @examples
#' \dontrun{
#' #' cds <- reducedDimA(A)
#' }
`reducedDimW<-` <- function( cds, value ) {
  stopifnot( is( cds, "CellDataSet" ) )
  cds@reducedDimW <- value
  validObject( cds )
  cds
}   

#' Get the weights needed to lift cells back to high dimensional expression space.
#' 
#' Retrieves the weights that transform the cells' coordinates in the reduced 
#' dimension space back to the full (whitened) space.
#'
#' @param cds A CellDataSet object.
#' @return A matrix that when multiplied by a reduced-dimension set of coordinates for the CellDataSet, 
#' recovers a matrix in the full (whitened) space
#' @export
#' @examples
#' \dontrun{
#' A <- reducedDimA(HSMM)
#' }
reducedDimA <- function( cds ) {
  stopifnot( is( cds, "CellDataSet" ) )
  cds@reducedDimA
}   

#' Get the weights needed to lift cells back to high dimensional expression space.
#' 
#' Sets the weights transform the cells' coordinates in the reduced dimension 
#' space back to the full (whitened) space.
#'
#' @param cds A CellDataSet object.
#' @param value A whitened expression data matrix
#' @return An updated CellDataSet object
#' @export
#' @examples
#' \dontrun{
#' cds <- reducedDimA(A)
#' }
`reducedDimA<-` <- function( cds, value ) {
  stopifnot( is( cds, "CellDataSet" ) )
  cds@reducedDimA <- value
  validObject( cds )
  cds
}   

#' Retrieves the minimum spanning tree generated by Monocle during cell ordering.
#'
#' Retrieves the minimum spanning tree (MST) that Monocle constructs during orderCells().
#' This MST is mostly used in plot_spanning_tree to help assess the accuracy 
#' of Monocle\'s ordering.
#' @param cds expression data matrix for an experiment
#' @return An igraph object representing the CellDataSet's minimum spanning tree.
#' @export
#' @examples
#' \dontrun{
#' T <- minSpanningTree(HSMM)
#' }
minSpanningTree <- function( cds ) {
  stopifnot( is( cds, "CellDataSet" ) )
  cds@minSpanningTree
}   

#' Set the minimum spanning tree generated by Monocle during cell ordering.
#' 
#' Sets the minimum spanning tree used by Monocle during cell ordering. Not intended to be called directly.
#'
#' @param cds A CellDataSet object.
#' @param value an igraph object describing the minimum spanning tree.
#' @return An updated CellDataSet object
#' @export
#' @examples
#' \dontrun{
#' cds <- minSpanningTree(T)
#' }
`minSpanningTree<-` <- function( cds, value ) {
  stopifnot( is( cds, "CellDataSet" ) )
  cds@minSpanningTree <- value
  validObject( cds )
  cds
}   

#' Get the matrix of pairwise distances between cells
#' 
#' Retrieves a matrix capturing distances between each cell used during cell ordering.
#'
#' @param cds expression data matrix for an experiment
#' @return A square, symmetric matrix containing the distances between each cell in the reduced-dimensionality space.
#' @docType methods
#' @export
#' @examples
#' \dontrun{
#' D <- cellPairwiseDistances(HSMM)
#' }
cellPairwiseDistances <- function( cds ) {
  stopifnot( is( cds, "CellDataSet" ) )
  cds@cellPairwiseDistances
}   

#' Sets the matrix containing distances between each pair of cells used by Monocle during cell ordering. Not intended to be called directly.
#'
#' @param cds A CellDataSet object.
#' @param value a square, symmetric matrix containing pairwise distances between cells.
#' @return An updated CellDataSet object
#' @export
#' @examples
#' \dontrun{
#' cds <- cellPairwiseDistances(D)
#' }
`cellPairwiseDistances<-` <- function( cds, value ) {
  stopifnot( is( cds, "CellDataSet" ) )
  cds@cellPairwiseDistances <- value
  validObject( cds )
  cds
}   
cole-trapnell-lab/monocle-release documentation built on May 13, 2019, 8:50 p.m.