Description Usage Arguments Value See Also Examples
Calculates the log likelihood for user-provided cell population and feature module clusters using the 'celda_CG()' model.
1 2 | logLikelihood.celda_CG(counts, sample.label, z, y, K, L, alpha, beta, delta,
gamma)
|
counts |
Integer matrix. Rows represent features and columns represent cells. |
sample.label |
Vector or factor. Denotes the sample label for each cell (column) in the count matrix. |
z |
Numeric vector. Denotes cell population labels. |
y |
Numeric vector. Denotes feature module labels. |
K |
Integer. Number of cell populations. |
L |
Integer. Number of feature modules. |
alpha |
Numeric. Concentration parameter for Theta. Adds a pseudocount to each cell population in each sample. Default 1. |
beta |
Numeric. Concentration parameter for Phi. Adds a pseudocount to each feature module in each cell population. Default 1. |
delta |
Numeric. Concentration parameter for Psi. Adds a pseudocount to each feature in each module. Default 1. |
gamma |
Numeric. Concentration parameter for Eta. Adds a pseudocount to the number of features in each module. Default 1. |
... |
Additional parameters. |
The log likelihood for the given cluster assignments
'celda_CG()' for clustering features and cells
1 2 3 4 5 6 | loglik = logLikelihood(celda.CG.sim$counts, model="celda_CG",
sample.label=celda.CG.sim$sample.label,
z=celda.CG.sim$z, y=celda.CG.sim$y,
K=celda.CG.sim$K, L=celda.CG.sim$L,
alpha=celda.CG.sim$alpha, beta=celda.CG.sim$beta,
gamma=celda.CG.sim$gamma, delta=celda.CG.sim$delta)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.