View source: R/seuratFunctions.R
runSeuratFindClusters | R Documentation |
runSeuratFindClusters Computes the clusters from the input sce object and stores them back in sce object
runSeuratFindClusters(
inSCE,
useAssay = "seuratNormData",
useReduction = c("pca", "ica"),
dims = 10,
algorithm = c("louvain", "multilevel", "SLM"),
groupSingletons = TRUE,
resolution = 0.8,
seed = 12345,
externalReduction = NULL,
verbose = TRUE
)
inSCE |
(sce) object from which clusters should be computed and stored in |
useAssay |
Assay containing scaled counts to use for clustering. |
useReduction |
Reduction method to use for computing clusters. One of
"pca" or "ica". Default |
dims |
numeric value of how many components to use for computing
clusters. Default |
algorithm |
selected algorithm to compute clusters. One of "louvain",
"multilevel", or "SLM". Use |
groupSingletons |
boolean if singletons should be grouped together or
not. Default |
resolution |
Set the resolution parameter to find larger (value above 1)
or smaller (value below 1) number of communities. Default |
seed |
Specify the seed value. Default |
externalReduction |
Pass DimReduc object if PCA/ICA computed through
other libraries. Default |
verbose |
Logical value indicating if informative messages should
be displayed. Default is |
Updated sce object which now contains the computed clusters
data(scExample, package = "singleCellTK")
## Not run:
sce <- runSeuratNormalizeData(sce, useAssay = "counts")
sce <- runSeuratFindHVG(sce, useAssay = "counts")
sce <- runSeuratScaleData(sce, useAssay = "counts")
sce <- runSeuratPCA(sce, useAssay = "counts")
sce <- runSeuratFindClusters(sce, useAssay = "counts")
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.