#' Plot regulon dynamics.
#'
#' Plot derivative and kinetic patterns of predicted regulators of cell-fate
#' transitions and save to file.
#'
#' @param object CellRouter object.
#' @param p character; selected trajectory.
#' @param regulator character; the selected regulator.
#' @param scores list; scores of transcriptional regulators.
#' @param cluster boolean; whether to cluster kinetic patterns.
#'
#' @return list; ggplot2 plots.
#'
#' @export
#' @docType methods
#' @rdname plotRegulonDynamics-methods
setGeneric('plotRegulonDynamics', function(object, p, regulator, scores,
cluster = TRUE)
standardGeneric('plotRegulonDynamics'))
#' @rdname plotRegulonDynamics-methods
#' @aliases plotRegulonDynamics
setMethod('plotRegulonDynamics',
signature="CellRouter",
definition=function(object, p, regulator, scores, cluster = TRUE){
#
# duvida: e esse comentario aqui?
#
#show only the ones with changes after regualtor changes?
#or use derivative > 0 instead of max? >0 as a first line...
#show line where derivative is equal zero...
genelist <- scores[[p]][['targets']][[regulator]]
colors <- c("navy","white","orange")
# Derivative plot.
matrix <- object@dynamics[[p]][genelist,]
time <- 1:501
# Derivative analysis.
matrix <- as.data.frame(t(apply(matrix, 1,
function(x){diff(x)/diff(time)})))
colnames(matrix) <- 1:500
positions <- as.numeric(colnames(matrix)[max.col(matrix,
ties.method="first")])
names(positions) <- rownames(matrix)
m.regulator <- positions[regulator]
positions <- positions[positions >= m.regulator]
position <- positions[regulator]
matrix <- matrix[names(positions),]
hc <- hclust(dist(matrix), method='ward.D')
if(cluster == TRUE){
matrix <- matrix[hc$order,]
}
order <- unique(c(regulator, rownames(matrix)))
matrix2 <- matrix
paletteLength <- 100
myColor <- colorRampPalette(c("navy","white","red"))(paletteLength)
myBreaks <- c(seq(min(matrix), 0,
length.out = ceiling(paletteLength/2) + 1),
seq(max(matrix)/paletteLength, max(matrix),
length.out = floor(paletteLength/2)))
matrix$cluster <- rownames(matrix)
matrix.m <- reshape2::melt(matrix, id.var="cluster")
matrix.m$cluster <- factor(rownames(matrix), levels=rev(order))
# First plot.
g2 <- ggplot2::ggplot(matrix.m, ggplot2::aes(variable, cluster)) +
ggplot2::geom_tile(ggplot2::aes(fill = value)) +
ggplot2::geom_vline(ggplot2::aes(xintercept = position),
linetype = "dotted") +
ggplot2::scale_fill_gradient2("Derivative", low = "navy",
high = "red") +
ggplot2::theme_bw() +
ggplot2::xlab("CellRouter trajectory") + ggplot2::ylab("") +
ggplot2::theme(legend.position="bottom",
axis.title.y = element_text(size = ggplot2::rel(0.3),
angle = 90),
panel.grid.major = ggplot2::element_blank(),
panel.grid.minor = ggplot2::element_blank(),
axis.text.x = ggplot2::element_blank(),
axis.ticks = ggplot2::element_blank(),
panel.border = ggplot2::element_rect(fill = NA,
colour = ggplot2::alpha('black', 1),
size = 1)) +
ggplot2::ggtitle(p)
# Expression analysis.
matrix <- object@dynamics[[p]][rownames(matrix),]
matrix <- as.data.frame(t(apply(matrix, 1,
function(x){rescale(x, c(0,1))})))
matrix$cluster <- rownames(matrix)
matrix.m <- reshape2::melt(matrix, id.var="cluster")
matrix.m$cluster <- factor(rownames(matrix),
levels = rev(rownames(matrix)))
# Second plot.
g1 <- ggplot2::ggplot(matrix.m, ggplot2::aes(variable, cluster)) +
ggplot2::geom_tile(ggplot2::aes(fill = value)) +
ggplot2::geom_vline(ggplot2::aes(xintercept=position),
linetype = "solid") +
ggplot2::scale_fill_gradientn("Scaled expression",
colours = colors) +
ggplot2::theme_bw() +
ggplot2::xlab("CellRouter trajectory") + ggplot2::ylab("") +
ggplot2::theme(legend.position="bottom",
axis.title.y = ggplot2::element_text(size = ggplot2::rel(0.3),
angle = 90),
panel.grid.major = ggplot2::element_blank(),
panel.grid.minor = ggplot2::element_blank(),
axis.text.x = ggplot2::element_blank(),
axis.ticks = ggplot2::element_blank(),
panel.border = ggplot2::element_rect(fill = NA,
colour = ggplot2::alpha('black', 1),
size = 1)) +
ggplot2::ggtitle(p)
plots <- list(expression = g2, derivative = g1)
return(plots)
}
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.