#' KEGG Pathway Enrichment analysis function
#' @importFrom dplyr filter_
#' @param df DGE files (DESeq2 result files) or vector contains gene names
#' @param KO_FILE KEGG annotation data
#' @param minSize minimal number of genes included in significant terms
#' @param padj.method p value adjust method (default: BH)
#' @param cutoff cutoff value for filtering significant terms (default: 0.05)
#' @param maxSize maximum number of genes included in significant terms
#' @param keepRich keep terms with rich factor value equal 1 or not (default: TRUE)
#' @param filename output filename
#' @param gene.cutoff the cut-off value for select DEGs (default: 0.01)
#' @param bulitin use KEGG bulit in KEGG annotation or not(set FALSE if you want use newest KEGG data)
#' @export
KE<-function(df,KO_FILE,filename=NULL,gene.cutoff=0.01,minSize=2,maxSize=500,keepRich=TRUE,padj.method="BH",cutoff=0.05,builtin=TRUE){
suppressMessages(require(tidyr))
ko2gene<-sf(KO_FILE)
ko2gene_num<-name_table(ko2gene)
gene2ko<-sf(KO_FILE[,c(2,1)])
if(is.data.frame(df)){
IGE<-rownames(df)[df$padj<gene.cutoff]
}else{
IGE=as.vector(df)
}
fgene2ko=gene2ko[IGE]
fko2gene=reverseList(fgene2ko)
k=name_table(fko2gene)
n=length(unique(unlist(fko2gene)))
M=ko2gene_num[names(k)]
N=length(unique(KO_FILE[,1]))
rhs<-hyper_bench_vector(k,M,N,n)
lhs<-p.adjust(rhs,method=padj.method)
all_ko<-.get_kg_dat(builtin=builtin)
rhs_an<-all_ko[names(rhs),]
rhs_gene<-unlist(lapply(fko2gene, function(x)paste(unique(x),sep="",collapse = ",")))
resultFis<-data.frame("Annot"=names(rhs),"Term"=rhs_an,"Annotated"=M[names(rhs)],
"Significant"=k[names(rhs)],"Pvalue"=as.vector(rhs),"Padj"=lhs,
"GeneID"=rhs_gene[names(rhs)])
resultFis<-resultFis[order(resultFis$Pvalue),]
resultFis<-resultFis[resultFis$Pvalue<cutoff,]
resultFis<-filter_(resultFis, ~Significant<=maxSize)
resultFis<-resultFis[order(resultFis$Pvalue),]
resultFis<-resultFis[resultFis$Pvalue<cutoff,]
resultFis<-filter_(resultFis, ~Significant<=maxSize)
if(keepRich==FALSE){
resultFis<-filter_(resultFis, ~Significant>=minSize)
}else{
resultFis<-filter_(resultFis, ~Significant>=minSize|(~Annotated/~Significant)==1)
}
if(!is.null(filename)){
write.table(resultFis,file=paste(filename,".txt",sep=""),sep="\t",quote=F,row.names=F)
}
return(resultFis)
}
#' Display KEGG enrichment result
#' @param resultFis: KEGG ennrichment analysis result data.frame
#' @param top: Number of Terms you want to display
#' @param filename: output filename
#' @param pvalue.cutoff: the cut-off value for selecting Term
#' @param padj.cutoff: the padj cut-off value for selecting Term
#' @param usePadj use adjust pvalue or not
#' @param order order bar or not
#' @param low color used for small value
#' @param high color used for large value
#' @param alpha alpha-transparency scales
#' @param horiz use horiz or not
#' @param fontsize.x fontsize for x axis
#' @param fontsize.y fontsize for y axis
#' @param filename output filename
#' @param width width for output file
#' @param height height for output file
#' @export
#' @author Kai Guo
KE.plot<-function(resultFis,pvalue.cutoff=0.05,top=50,order=FALSE,
low="lightpink",high="red",alpha=0.7,
font.x="bold",font.y="bold",fontsize.x=10,fontsize.y=10,
padj.cutoff=NULL,usePadj=TRUE,filename=NULL,width=10,height=8){
library(ggplot2)
if(!is.null(padj.cutoff)){
resultFis<-resultFis[resultFis$Padj<padj.cutoff,]
}else{
resultFis<-resultFis[resultFis$Pvalue<pvalue.cutoff,]
}
if(nrow(resultFis)>=top){
dd<-resultFis[1:top,]
}else{
dd<-resultFis
}
if(nrow(dd)>=1){
dd[,3]<-dd[,4]/dd[,3]
colnames(dd)[3]<-"rich";
if(order==TRUE){
dd$Term<-factor(dd$Term,levels=dd$Term[order(dd$rich)])
}
if(usePadj==FALSE){
p<-ggplot(dd,aes(x=rich,y=Term))+geom_point(aes(size=Significant,color=-log10(Pvalue)),alpha=alpha)+theme_minimal()+
theme(axis.text.y=element_text(face=font.y,size=fontsize.y),axis.text.x=element_text(face=font.x,color="black",size=fontsize.x))+
scale_colour_gradient(low=low,high=high)+ylab("Pathway name")+
xlab("Rich factor")+labs(size="Gene number")+guides(color=guide_colourbar(order = 1),size=guide_legend(order = 2))
print(p)
}else{
p<-ggplot(dd,aes(x=rich,y=Term))+geom_point(aes(size=Significant,color=-log10(Padj)),alpha=alpha)+theme_minimal()+
theme(axis.text.y=element_text(face=font.y,size=fontsize.y),axis.text.x=element_text(face=font.x,color="black",size=fontsize.x))+
scale_colour_gradient(low=low,high=high)+ylab("Pathway name")+
xlab("Rich factor")+labs(size="Gene number")+guides(color=guide_colourbar(order = 1),size=guide_legend(order = 2))
print(p)
}}else{
cat("No Pathway enrichment results were found!\n")
}
if(!is.null(filename)){
ggsave(p,file=paste(filename,"KEGG.pdf",sep="_"),width=width,height=height)
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.