Description Usage Arguments Details Value Source See Also Examples
Runs Leiden community detection algorithm to detect clusters.
1 2 3 | cluster_leiden(fsce, expt = "rnaseq", method = "PCA", dims = 1:5,
prune = 1/15, seed = NULL,
partition_type = "ModularityVertexPartition", ...)
|
fsce |
An object of class |
expt |
Data to use for calculating variable features
(default is |
method |
dimensionality reduction method for clustering (defaults to PCA) |
dims |
dimensions to use for nearest-neighbor calculation |
prune |
Pruning parameter for shared nearest-neighbor calculation. |
seed |
seed for |
partition_type |
partitioning algorithm (see |
... |
Parameters to pass to the Python |
Execute install_py_deps()
to install required python modules leidenalg
and igraph
.
fsce with leiden_cluster
in expt
colData.
https://github.com/vtraag/leidenalg
https://github.com/TomKellyGenetics/leiden
Other clustering functions: cluster_kmeans
1 2 | fsce_small <- cluster_leiden(fsce_small)
SingleCellExperiment::colData(fsce_small[["rnaseq"]])
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.