#' Find markers for each group by limma's pairwise moderated t-tests over a logFC cutoff
#'
#' Perform limma's pairwise moderated t-tests, find specifically up or down-regulated markers for each group over a logFC cutoff.
#'
#' @param direction Either "up" or "down" or both
#' @inheritParams ezlimma::limma_contrasts
#' @inheritParams rankprod
#' @return Data frame.
#' @export
limma_treat_find_all_markers <- function(object, grp, direction= c("up", "down"), treat.lfc=log2(1.2), design=NULL,
add.means=!is.null(grp),
adjust.method="BH", weights=NA, trend=FALSE, block=NULL, correlation=NULL,
moderated=TRUE){
stopifnot(ncol(object)==length(grp), colnames(object)==names(grp), length(unique(grp))>1)
# make model
if (is.null(design)){
design <- stats::model.matrix(~0+grp)
colnames(design) <- sub('grp', '', colnames(design), fixed=TRUE)
}
# lmFit
if (!is.na(weights)){
if (!is.matrix(object) && !is.null(object$weights)){ cat('object$weights are being ignored\n') }
fit <- limma::lmFit(object, design, block = block, correlation = correlation, weights=weights)
} else {
fit <- limma::lmFit(object, design, block = block, correlation = correlation)
}
# make contrast
groups <- unique(sort(grp))
comb <- utils::combn(groups, 2)
contrasts.v <- character(0)
for(i in 1:ncol(comb)){
contrasts.v[paste0(comb[2, i], "_vs_", comb[1, i])] <- paste0(comb[2, i], " - ", comb[1, i])
}
contr.mat <- limma::makeContrasts(contrasts=contrasts.v, levels=design)
# contrasts.fit & treat
fit2 <- limma::contrasts.fit(fit, contr.mat)
fit2 <- limma::treat(fit2, lfc=treat.lfc, trend=trend)
# topTable
for (i in seq_along(contrasts.v)) {
tt <- limma::topTreat(fit2, number=Inf, coef=contrasts.v[i])
tt <- tt[, c("P.Value", "logFC")]
colnames(tt) <- paste(names(contrasts.v)[i], c("p", "logFC"), sep = ".")
if(i == 1) {
mtt <- tt
} else {
mtt <- cbind(mtt, tt[rownames(mtt), ])
}
}
mtt <- multi_pval2z(mtt)
mtt_rev <- -1*mtt
nms_rev <- sapply(1:ncol(comb), function(i) paste0(comb[1, i], "_vs_", comb[2, i]))
colnames(mtt_rev) <- paste0(nms_rev)
mtt <- cbind(mtt, mtt_rev)
rm(mtt_rev)
resAll <- list()
for (d in direction) {
res <- list()
score_fn <- switch(d, up=min, down=max)
for(i in seq_along(groups)){
nms <- sapply(setdiff(seq_along(groups), i), function(j) paste0(groups[i], "_vs_", groups[j]))
mtt_tmp <- mtt[, nms, drop=FALSE]
score <- apply(mtt_tmp, 1, score_fn, na.rm=TRUE)
score[is.infinite(score)] <- NA # for min/max of all NAs
n <- length(groups) - 1
if(d=="up"){
pval <- (1 - stats::pnorm(score))^n
}else if(d=="down"){
pval <- (stats::pnorm(score))^n
}
fdr <- stats::p.adjust(pval, method=adjust.method)
res_tmp <- data.frame(score=score, p=pval, FDR=fdr)
colnames(res_tmp) <- paste(groups[i], d, colnames(res_tmp), sep=".")
res[[i]] <- res_tmp
}
res <- Reduce(cbind, res)
res <- res[rownames(object), ]
resAll[[d]] <- res
}
resAll <- Reduce(cbind, resAll)
if(add.means){
mat_avg <- t(apply(object, 1, FUN=function(v) tapply(v, grp, mean, na.rm=TRUE)))
colnames(mat_avg) <- paste0(colnames(mat_avg), ".avg")
resAll <- cbind(mat_avg[rownames(resAll), ], resAll)
}
return(resAll)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.