R/genomic.R

Defines functions smartAlign circos.genomicLabels circos.genomicHeatmap posTransform.text posTransform.default rainfallTransform circos.genomicRainfall .normalizeGraphicalParam normalizeToDataFrame is.dataFrameList get.current.chromosome continuousIndexSegment highlight.chromosome genomicDensity circos.genomicDensity circos.genomicPosTransformLines circos.genomicLink circos.genomicText circos.genomicRect circos.genomicLines circos.genomicPoints getI circos.genomicTrack circos.genomicTrackPlotRegion circos.genomicAxis circos.initializeCircularGenome circos.genomicInitialize circos.genomicIdeogram circos.initializeWithIdeogram

Documented in circos.genomicAxis circos.genomicDensity circos.genomicHeatmap circos.genomicIdeogram circos.genomicInitialize circos.genomicLabels circos.genomicLines circos.genomicLink circos.genomicPoints circos.genomicPosTransformLines circos.genomicRainfall circos.genomicRect circos.genomicText circos.genomicTrack circos.genomicTrackPlotRegion circos.initializeCircularGenome circos.initializeWithIdeogram genomicDensity get.current.chromosome getI highlight.chromosome posTransform.default posTransform.text rainfallTransform smartAlign

# == title
# Initialize the circular layout with an ideogram
#
# == param
# -cytoband  A path of the cytoband file or a data frame that already contains cytoband data. By default it is cytoband for hg19.
#            Pass to `read.cytoband`.
# -species Abbreviations of species. e.g. hg19 for human, mm10 for mouse. If this
#          value is specified, the function will download cytoBand.txt.gz from
#          UCSC website automatically. If there is no cytoband for user's species,
#          it will keep on trying to download chromInfo file. Pass to `read.cytoband` or `read.chromInfo`.
# -chromosome.index subset of chromosomes, also used to reorder chromosomes.
# -sort.chr Whether chromosome names should be sorted (first sort by numbers then by letters).
#           If ``chromosome.index`` is set, this argumetn is enforced to ``FALSE``
# -draw.chr.prefix Whether draw the "chr" prefix for chromosomes.
# -major.by     Increment of major ticks. Pass to `circos.genomicInitialize`.
# -plotType     Which tracks should be drawn. ``ideogram`` for ideogram rectangle, ``axis`` for genomic axis and ``labels`` for chromosome names.
#               If there is no ideogram for specified species, ``ideogram`` will be enforced to be excluded.
#               If it is set to ``NULL``, the function just initialize the plot but draw nothing.
# -track.height Height of the track which contains "axis" and "labels".
# -ideogram.height Height of the ideogram track
# -...    Pass to `circos.genomicInitialize`.
#
# == details
# The function will initialize the circular plot in which each sector corresponds to a chromosome. You can control the order of 
# chromosomes by ``chromosome.index`` or by ``sort.chr``, or by setting a special format of ``cytoband`` (please refer to `read.cytoband` 
# to find out how to control a proper ``cytoband``).
#
# The function finally pass data to `circos.genomicInitialize` to initialize the circular plot.
#
# The style of ideogram is almost fixed, but you can customize it with your self-sefined code. Refer to vignette for demonstration.
#
# == seealso
# https://jokergoo.github.io/circlize_book/book/initialize-genomic-plot.html#initialize-cytoband
#
# == example
# \donttest{
# circos.initializeWithIdeogram()
#
# cytoband.file = system.file(package = "circlize",
#     "extdata", "cytoBand.txt")
# circos.initializeWithIdeogram(cytoband.file)
#
# cytoband.df = read.table(cytoband.file, colClasses = c("character", "numeric",
#     "numeric", "character", "character"), sep = "\t")
# circos.initializeWithIdeogram(cytoband.df)
#
# circos.initializeWithIdeogram(species = "hg18")
#
# circos.initializeWithIdeogram(species = "mm10")
#
# circos.initializeWithIdeogram(chromosome.index = c("chr1", "chr2"))
#
# cytoband = read.table(cytoband.file, colClasses = c("character", "numeric",
#     "numeric", "character", "character"), sep = "\t")
# circos.initializeWithIdeogram(cytoband, sort.chr = FALSE)
#
# cytoband[[1]] = factor(cytoband[[1]], levels = paste0("chr", c(22:1, "X", "Y")))
# circos.initializeWithIdeogram(cytoband, sort.chr = FALSE)
#
# cytoband = read.table(cytoband.file, colClasses = c("character", "numeric",
#     "numeric", "character", "character"), sep = "\t")
# circos.initializeWithIdeogram(cytoband, sort.chr = TRUE)
#
# circos.initializeWithIdeogram(plotType = c("axis", "labels"))
#
# circos.initializeWithIdeogram(plotType = NULL)
#
# circos.par("start.degree" = 90)
# circos.initializeWithIdeogram()
# circos.clear()
#
# circos.par("gap.degree" = rep(c(2, 4), 12))
# circos.initializeWithIdeogram()
# circos.clear()
# }
circos.initializeWithIdeogram = function(
	cytoband = system.file(package = "circlize", "extdata", "cytoBand.txt"), 
	species = NULL, 
	sort.chr = TRUE,
	draw.chr.prefix = FALSE,
	chromosome.index = usable_chromosomes(species), 
	major.by = NULL,
	plotType = c("ideogram", "axis", "labels"), 
	track.height = NULL, 
	ideogram.height = convert_height(2, "mm"), 
	...) {
	
	if("sector.names" %in% names(list(...))) {
		stop_wrap("Found argumnet `sector.names` is used. Please use the argument `chromosome.index` instead.")
	}

	# proper order will be returned depending on cytoband and sort.chr
	e = try(cytoband <- read.cytoband(cytoband, species = species, sort.chr = sort.chr, chromosome.index = chromosome.index), silent = TRUE)
	if(inherits(e, "try-error") && !is.null(species)) {  # if species is defined
		e2 = try(cytoband <- read.chromInfo(species = species, sort.chr = sort.chr, chromosome.index = chromosome.index), silent = TRUE)
		if(inherits(e2, "try-error")) {
			message(e)
			message(e2)
			stop_wrap("Cannot download either cytoband or chromInfo file from UCSC.")
		} else {
			message_wrap("Downloading cytoBand file from UCSC failed. Use chromInfo file instead. Note ideogram track will be removed from the plot.")
			plotType = setdiff(plotType, "ideogram")

			# because in chromInfo file, there are also many short scaffold
			if(is.null(chromosome.index)) {
	            chromInfo = read.chromInfo(species = species)
	            chr_len = sort(chromInfo$chr.len, decreasing = TRUE)

	            # sometimes there are small scaffold
	            i = which(chr_len[seq_len(length(chr_len)-1)] / chr_len[seq_len(length(chr_len)-1)+1] > 5)[1]
	            if(length(i)) {
	                chromosome = chromInfo$chromosome[chromInfo$chromosome %in% names(chr_len[chr_len >= chr_len[i]])]
	            } else {
	                chromosome = chromInfo$chromosome
	            }
	            cytoband = read.chromInfo(species = species, chromosome.index = chromosome, sort.chr = sort.chr)
	        } 
		}
	} else if(inherits(e, "try-error")) {
		stop(e)
	}
	df = cytoband$df
	chromosome = cytoband$chromosome
	if(is.null(chromosome)) {
		if(is.factor(cytoband[, 1])) {
			chromosome = levels(cytoband$df[, 1])
		} else {
			chromosome = unique(cytoband$df[, 1])
		}
	}

	if(is.null(chromosome.index)) {
		chromosome.index = chromosome
	}

	# here df[[1]] is quite important, should be re-factered
	df[[1]] = factor(as.vector(df[[1]]), levels = chromosome.index)
	
	# sn for sector names, but not for sector index
	sn = unique(as.vector(df[[1]]))

	if(!draw.chr.prefix) {
		# we do not need 'chr' prefix if it exits, it holds too much space.
		sn = gsub("chr", "", sn)
	}
	
	o.cell.padding = circos.par("cell.padding")
	circos.par(cell.padding = c(o.cell.padding[1], 0, o.cell.padding[3], 0))
	
	circos.genomicInitialize(df, sector.names = sn, major.by = major.by, plotType = plotType, track.height = track.height, ...)

	if(any(plotType %in% "ideogram")) {
		circos.genomicIdeogram(df, track.height = ideogram.height)
	}
}

# == title
# Add an ideogram track
#
# == param
# -cytoband A data frame or a file path, pass to `read.cytoband`.
# -species Abbreviations of the genome, pass to `read.cytoband`.
# -track.height Height of the ideogram track.
# -track.margin Margins for the track.
#
# == seealso
# https://jokergoo.github.io/circlize_book/book/high-level-genomic-functions.html#ideograms
#
# == author
# Zuguang Gu <z.gu@dkfz.de>
#
# == example
# \donttest{
# circos.initializeWithIdeogram(plotType = c("labels", "axis"))
# circos.track(ylim = c(0, 1))
# circos.genomicIdeogram() # put ideogram as the third track
# }
circos.genomicIdeogram = function(
	cytoband = system.file(package = "circlize", "extdata", "cytoBand.txt"), 
	species = NULL, 
	track.height = mm_h(2),
	track.margin = circos.par("track.margin")) {

	chromosome.index = get.all.sector.index()
	e = try(cytoband <- read.cytoband(cytoband, species = species, chromosome.index = chromosome.index), silent = TRUE)
	if(inherits(e, "try-error")) {
		stop(e)
	}
	df = cytoband$df
	if(all(cytoband.col(df[, 5]) == "#FFFFFF")) {
		warning_wrap("Cannot map colors to cytobands. The ideogram won't be drawn.")
		return(invisible(NULL))
	}
	circos.genomicTrackPlotRegion(df, ylim = c(0, 1), bg.border = NA, track.height = track.height,
		panel.fun = function(region, value, ...) {
			col = cytoband.col(value[[2]])
			circos.genomicRect(region, value, ybottom = 0, ytop = 1, col = col, border = NA, ...)
			xlim = get.cell.meta.data("xlim")
			circos.rect(xlim[1], 0, xlim[2], 1, border = "black")
		}, cell.padding = c(0, 0, 0, 0), track.margin = track.margin
	)
}

# == title
# Initialize circular plot with any genomic data
#
# == param
# -data         A data frame in bed format.
# -sector.names Labels for each sectors which will be drawn along each sector. It will not modify values of sector index.
# -major.by     Increment of major ticks. It is calculated automatically if the value is not set (about every 10 degrees there is a major tick).
# -plotType     If it is not ``NULL``, there will create a new track containing axis and names for sectors.
#               This argument controls which part should be drawn, ``axis`` for genomic axis and ``labels`` for chromosome names
# -tickLabelsStartFromZero Whether axis tick labels start from 0? This will only affect the axis labels while not affect x-values in cells.
# -axis.labels.cex The font size for the axis tick labels.
# -labels.cex   The font size for the labels.
# -track.height If ``PlotType`` is not ``NULL``, height of the annotation track.
# -...          Pass to `circos.initialize`
#
# == details
# The function will initialize circular plot from genomic data. If ``plotType`` is set with value in ``axis`` or ``labels``, there will
# create a new track.
#
# The order of sectors related to data structure of ``data``. If the first column in ``data`` is a factor, the order of sectors
# is ``levels(data[[1]])``; If the first column is just a simple vector, the order of sectors is ``unique(data[[1]]``.
#
# For more details on initializing genomic plot, please refer to the vignettes.
#
# == seealso
# https://jokergoo.github.io/circlize_book/book/initialize-genomic-plot.html#initialize-with-general-genomic-category
#
# == example
# df = read.cytoband()$df
# circos.genomicInitialize(df)
#
# df = data.frame(name = c("TP53", "TP63", "TP73"),
#                 start = c(7565097, 189349205, 3569084),
#                 end = c(7590856, 189615068, 3652765),
#                 stringsAsFactors = FALSE)
# circos.genomicInitialize(df)
# circos.clear()
#
# circos.genomicInitialize(df, tickLabelsStartFromZero = FALSE)
# circos.clear()
#
# circos.genomicInitialize(df, major.by = 5000)
# circos.clear()
#
# circos.genomicInitialize(df, plotType = "labels")
# circos.clear()
#
# circos.genomicInitialize(df, sector.names = c("tp53", "tp63", "tp73"))
# circos.clear()
#
# circos.genomicInitialize(df, sector.names = c("tp53x", "tp63x", "tp73"))
# circos.clear()
#
# df[[1]] = factor(df[[1]], levels = c("TP73", "TP63", "TP53"))
# circos.genomicInitialize(df)
# circos.clear()
#
circos.genomicInitialize = function(
	data, 
	sector.names = NULL, 
	major.by = NULL,
	plotType = c("axis", "labels"), 
	tickLabelsStartFromZero = TRUE,
	axis.labels.cex = 0.4*par("cex"), 
	labels.cex = 0.8*par("cex"), 
	track.height = NULL, 
	...) {

	data = validate_data_frame(data)
	validate_region(data, check_chr = FALSE)
	
	if(is.factor(data[[1]])) {
		fa = levels(data[[1]])
	} else {
		fa = unique(data[[1]])
	}
	
	if(!is.null(sector.names)) {
		if(length(sector.names) != length(fa)) {
			stop_wrap("length of `sector.names` and length of sectors differ.")
		}
	} else {
		sector.names = fa
	}
	
	names(sector.names) = fa
	
	# calculate xlim
	x1 = tapply(data[[2]], data[[1]], min)[fa]
	x2 = tapply(data[[3]], data[[1]], max)[fa]
	
	op = circos.par("cell.padding")
	ow = circos.par("points.overflow.warning")
	circos.par(cell.padding = c(0, 0, 0, 0), points.overflow.warning = FALSE)
	circos.initialize(factor(fa, levels = fa), xlim = cbind(x1, x2), ...)

	if(circos.par$ring) {
		op = c(op[1], 0, op[3], 0)
    	ow = FALSE
	}

	if(is.null(track.height)) {
		if(all(c("axis", "labels") %in% plotType)) {
			track.height = convert_unit_in_canvas_coordinate(1.5, "mm") + strheight("0", cex = axis.labels.cex) + 
				convert_unit_in_canvas_coordinate(0.5, "mm") + strheight("chr", cex = labels.cex)
		} else if("labels" %in% plotType) {
			track.height = strheight("chr", cex = labels.cex)
		} else if("axis" %in% plotType) {
			track.height = convert_unit_in_canvas_coordinate(1.5, "mm") + strheight("0", cex = axis.labels.cex)
		} else {
			track.height = convert_height(3, "mm")
		}
	}

	# axis and chromosome names
	if(any(plotType %in% c("axis", "labels"))) {
		circos.genomicTrackPlotRegion(data, ylim = c(0, 1), bg.border = NA, track.height = track.height,
			panel.fun = function(region, value, ...) {
				sector.index = get.cell.meta.data("sector.index")
				xlim = get.cell.meta.data("xlim")
				
				if(all(c("axis", "labels") %in% plotType)) {
					circos.genomicAxis(h = "bottom", major.by = major.by, tickLabelsStartFromZero = tickLabelsStartFromZero, labels.cex = axis.labels.cex)
					circos.text(mean(xlim), convert_y(1.5, "mm") + convert_y(strheight("chr", cex = axis.labels.cex), "canvas") + convert_y(0.5, "mm"), 
						labels = sector.names[sector.index], cex = labels.cex, adj = c(0.5, 0), niceFacing = TRUE)
				} else if("labels" %in% plotType) {
					circos.text(mean(xlim), 0, labels = sector.names[sector.index], cex = labels.cex, adj = c(0.5, 0), niceFacing = TRUE)
				} else if("axis" %in% plotType) {
					circos.genomicAxis(h = "bottom", major.by = major.by, tickLabelsStartFromZero = tickLabelsStartFromZero,labels.cex = axis.labels.cex)
				}
 			}
		)
	}
	
	circos.par("cell.padding" = op, "points.overflow.warning" = ow)
	return(invisible(NULL))
}


# == title
# Initialize a layout for circular genome
#
# == param
# -name Name of the genome (or the "chromosome name").
# -genome_size Size of the genome
# -plotType Pass to `circos.genomicInitialize`.
# -... All goes to `circos.genomicInitialize`.
#
circos.initializeCircularGenome = function(name, genome_size, plotType = "axis", ...) {
	circos.genomicInitialize(data.frame(name, 0, genome_size), ..., ring = TRUE, plotType = plotType)
} 

# == title
# Add genomic axes
#
# == param
# -h Position of the axes. "top" or "bottom".
# -major.at Major breaks. If ``major.at`` is set, ``major.by`` is ignored.
# -labels labels corresponding to ``major.at``. If ``labels`` is set, ``major.at`` must be set.
# -major.by Increment of major ticks. It is calculated automatically if the value is not set (about every 10 degrees there is a major tick).
# -tickLabelsStartFromZero Whether axis tick labels start from 0? This will only affect the axis labels while not affect x-values in cells.
# -labels.cex The font size for the axis tick labels.
# -sector.index Index for the sector
# -track.index  Index for the track
# -... Other arguments pass to `circos.axis`.
#
# == details
# It assigns proper tick labels under genomic coordinate.
# 
# == seealso
# https://jokergoo.github.io/circlize_book/book/high-level-genomic-functions.html#genomic-axes
#
# == example
# circos.initializeWithIdeogram(chromosome.index = paste0("chr", 1:4), plotType = NULL)
# circos.track(ylim = c(0, 1), panel.fun = function(x, y) circos.genomicAxis())
# circos.track(ylim = c(0, 1), track.height = 0.1)
# circos.track(track.index = get.current.track.index(), panel.fun = function(x, y) {
#     circos.genomicAxis(h = "bottom", direction = "inside")
# })
# circos.clear()
#
circos.genomicAxis = function(
	h = "top", 
	major.at = NULL, 
	labels = NULL,
	major.by = NULL, 
	tickLabelsStartFromZero = TRUE,
	labels.cex = 0.4*par("cex"), 
	sector.index = get.current.sector.index(),
	track.index = get.current.track.index(), 
	...) {

	if(!h %in% c("top", "bottom")) {
		stop_wrap("`h` can only be 'top' or 'bottom'.")
	}

	xlim = get.cell.meta.data("xlim", sector.index = sector.index, track.index = track.index)

	if(!is.null(major.at) && !is.null(labels)) {
		if(length(major.at) != length(labels)) {
			stop_wrap("Length of major.at and labels should be the same.")
		}
	}
	if(is.null(major.at) && !is.null(labels)) {
		stop_wrap("If labels is set, major.at should also be set.")
	}

	if(tickLabelsStartFromZero) {
		offset = xlim[1]
		if(is.null(major.by)) {
			major.by = .default.major.by()
		}

		if(is.null(major.at)) {
			major.at = seq(xlim[1], xlim[2], by = major.by)
			major.at = c(major.at, major.at[length(major.at)] + major.by)
		}
		
		if(is.null(labels)) {
			if(major.by >= 1e6) {
				major.tick.labels = paste((major.at-offset)/1000000, "Mb", sep = "")
			} else if(major.by >= 1e3) {
				major.tick.labels = paste((major.at-offset)/1000, "kb", sep = "")
			} else {
				major.tick.labels = paste((major.at-offset), "bp", sep = "")
			}
		} else {
			major.tick.labels = labels
		}
		
	} else {
		if(is.null(major.by)) {
			major.by = .default.major.by()
		}
		if(is.null(major.at)) {
			major.at = seq(floor(xlim[1]/major.by)*major.by, xlim[2], by = major.by)
			major.at = c(major.at, major.at[length(major.at)] + major.by)
		}

		if(is.null(labels)) {
			if(major.by >= 1e6) {
				major.tick.labels = paste(major.at/1000000, "MB", sep = "")
			} else if(major.by >= 1e3) {
				major.tick.labels = paste(major.at/1000, "KB", sep = "")
			} else {
				major.tick.labels = paste(major.at, "bp", sep = "")
			}
		} else {
			major.tick.labels = labels
		}
	}
	circos.axis(h = h, major.at = major.at, labels = major.tick.labels, labels.cex = labels.cex,
		sector.index = sector.index, track.index = track.index, ...)				
}

# == title
# Create a track for genomic graphics
#
# == param
# -data A bed-file-like data frame or a list of data frames
# -ylim If it is ``NULL``, the value will be calculated from data. If ``stack`` is set to ``TRUE``, this value is ignored.
# -stack whether to plot in a "stack" mode.
# -numeric.column Columns of numeric values in ``data`` that will be used for plotting. 
#                 If ``data`` is a data frame list, ``numeric.column`` should be either length of one or length of ``data``.
#                 If value of ``numeric.column`` is not set, its value will depend on the structure of ``data``.
#                 If ``data`` is a data frame, the default value for ``numeric.column`` is all the numeric column starting from the fourth column.
#                 If ``data`` is a list of data frame, the default value for ``numeric.column`` is a vector which have the same length as ``data``
#                 and the value in default ``numeric.column`` is the index of the first numeric column in corresponding data frame.
# -jitter Numeric. Only works for adding points in ``circos.genomicTrackPlotRegion`` under ``stack`` mode
# -panel.fun Self-defined function which will be applied on each sector. Please not it is different
#            from that in `circos.trackPlotRegion`. In this function, there are two arguments (``region`` and ``value``) plus ``...``.
#            In them, ``region`` is a two-column data frame with start positions and end positions in current genomic category (e.g. chromosome). 
#            ``value`` is a data frame which is derived from ``data`` but excluding the first three columns. Rows in ``value`` correspond to 
#            rows in ``region``. ``...`` is mandatory and is used to pass internal parameters to other functions. The definition of
#            ``value`` will be different according to different input data (data frame or list of data frame) and different settings (stacked or not), 
#            please refer to 'details' section and vignettes to detailed explanation.
# -... Pass to `circos.trackPlotRegion`.
#
# == details
# Similar as `circos.trackPlotRegion`, users can add customized graphics by ``panel.fun``, but the behaviour of ``panel.fun``
# will change depending on users' input data and ``stack`` setting.
#
# When ``data`` is a single data frame, ``region`` in ``panel.fun`` is a data frame containing the second and third column in ``data`` in 'current` genomic category (e.g. current chromosome).
# ``value`` is also a data frame containing columns in ``data`` excluding the first three columns.
#
# When ``data`` is a list containing data frames, ``panel.fun`` will be applied iteratively on each data frame, thus, 
# ``region`` is extracted from the data frame which is in the current iteration. For example, if ``data`` contains two data frames, ``panel.fun``
# will be applied with the first data frame in current chromosome and then applied with the second data frame in the same chromosome.
#
# If ``stack`` is set to ``TRUE``, ``ylim`` will be re-defined. in ``stack`` mode, the y-axis will be splitted into several part
# with equal height and graphics will be drawn on each 'horizontal' lines (y = 1, 2, ...). In this case:
#
# When ``data`` is a single data frame containing one or more numeric columns, each numeric column defined in ``numeric.column`` will be treated as a single unit. 
# ``ylim`` is re-defined to ``c(0.5, n+0.5)`` in which ``n`` is number of numeric columns. ``panel.fun`` will be applied iteratively on each numeric column. In each
# iteration, in ``panel.fun``, ``region`` is still the genomic regions in current genomic category, but ``value`` contains current numeric column plus all non-numeric columns.
# Under ``stack`` mode, in ``panel.fun``, all low-level genomic graphical functions will draw on the 'horizontal line' ``y = i`` in which ``i`` is the index of current numeric column 
# and the value of ``i`` can be obtained by `getI`.
#
# When ``data`` is a list containing data frames, each data frame will be treated as a single unit. The situation is quite similar as described in previous paragraph.
# ``ylim`` is re-defined to ``c(0.5, n+0.5)`` in which ``n`` is number of data frames. ``panel.fun`` will be applied iteratively on each data frame. In each
# iteration, in ``panel.fun``, ``region`` is still the genomic regions in current genomic category, and ``value`` contains columns in current data frame excluding the first three columns.
# Under ``stack`` mode, in ``panel.fun``, all low-level genomic graphical functions will draw on the 'horizontal line' ``y = i`` in which ``i`` is the index of current data frame.
#
# Being different from ``panel.fun`` in `circos.trackPlotRegion`, there should be an additional argument ``...`` in ``panel.fun``. This additional
# argument is used to pass hidden values to low-level graphical functions. So if you are using functions like ``circos.genomicPoints``, you should also
# add ``...`` as an additional argument into ``circos.genomicPoints``.
#
# == seealso
# https://jokergoo.github.io/circlize_book/book/genomic-plotting-region.html and https://jokergoo.github.io/circlize_book/book/modes-of-input.html
#
circos.genomicTrackPlotRegion = function(
	data = NULL, 
	ylim = NULL, 
	stack = FALSE,
	numeric.column = NULL, 
	jitter = 0,
	panel.fun = function(region, value, ...) {NULL}, 
	... ) {
	
	if(is.null(data)) {
		all.sector.index = get.all.sector.index()
		data = data.frame(all.sector.index,
		           rep(0, length(all.sector.index)),
				   rep(0, length(all.sector.index)))
	}

    if(is.function(data) || is.function(ylim) || is.function(stack) || is.function(numeric.column)) {
        stop_wrap("The panel function should be set explicitly with the argument name `panel.fun = ...`.")
    }
	
	# re-define panel.fun
	genomicPanelFun = panel.fun

	# now `data` is either a data frame or a list of data frame
	data = normalizeToDataFrame(data)

	if(is.dataFrameList(data)) {
		for(i in seq_along(data)) {
			data[[i]][[1]] = as.character(data[[i]][[1]])
			if(circos.par$ring) {
				l = data[[i]][, 2] > data[[i]][, 3]
				if(any(l)) {
					data[[i]][l, 2] = data[[i]][l, 2] - diff(get.sector.data()[c("min.value", "max.value")])
				}
			}
			validate_region(data[[i]], check_chr = FALSE)
		}
	} else {
		data[[1]] = as.character(data[[1]])
		if(circos.par$ring) {
			l = data[, 2] > data[, 3]
			if(any(l)) {
				data[l, 2] = data[l, 2] - diff(get.sector.data()[c("min.value", "max.value")])
			}
		}
		validate_region(data, check_chr = FALSE)
	}

	# excluding the first three columns
	if(!is.null(numeric.column)) {
		if(is.numeric(numeric.column)) {
			numeric.column = numeric.column - 3
		}
		if(any(numeric.column <= 0)) {
			stop_wrap("Wrong value in `numeric.column`, they should be larger than 3 or character index.")
		}
	}

	# auto calcualte numeric column
	if(is.dataFrameList(data)) {
		if(!is.null(numeric.column)) {
			if(length(numeric.column) == 1) {
				numeric.column = rep(list(numeric.column), length(data))
			} else if(length(numeric.column) == length(data)) {
				
			} else {
				stop_wrap("Length of `numeric.column` should only be one or length of ``data`` if it is a list of data frames.")
			}
			for(i in seq_along(data)) {
				if(!is.numeric(data[[i]][-(1:3)][, numeric.column[i]])) {
					stop_wrap("Some of your `numeric.column` are not numeric.")
				}
			}
		} else {
			numeric.column = sapply(data, function(gr) {
								nc = which(as.logical(sapply(gr[-(1:3)], is.numeric)))
								if(length(nc) == 0) {
									NA
								} else {
									nc[1]
								}
							})
		}
		
	} else {
		# check numeric.column
		if(is.null(numeric.column)) {
			numeric.column = which(as.logical(sapply(data[-(1:3)], is.numeric)))
		} else {
			if(!all(sapply(data[-(1:3)][, numeric.column, drop = FALSE], is.numeric))) {
				stop_wrap("Some of your `numeric.column` are not numeric.")
			}
		}
	}
	
	args = formals(genomicPanelFun)
	if(!(length(args) == 3 && names(args)[3] == "...")) {
		stop_wrap("The `panel.fun` need a third argument `...` to pass special parameters to graphical functions.")
	}

	if(stack) {
	
		if(is.dataFrameList(data)) {
			n = length(data)
			
			circos.trackPlotRegion(ylim = c(0.5, n + 0.5), panel.fun = function(x, y) {
						
					chr = get.current.chromosome()
					for(i in seq_len(n)) {
						l = data[[i]][[1]] == chr
						df = data[[i]][l, , drop = FALSE]
						if(nrow(df)) {
							.param = new.env()
							assign("i", i, envir = .param)
							assign("stack", TRUE, envir = .param)
							assign("jitter", jitter, envir = .param)
							if(!is.null(numeric.column) && !is.na(numeric.column[i])) {
								assign("numeric.column", numeric.column[i], envir = .param)
							}
							genomicPanelFun(df[2:3], df[-(1:3)], .param = .param)
						}
					}

				}, ...)
		} else {
			n = length(numeric.column)
			non.numeric.column = setdiff(seq_along(data[-(1:3)]), numeric.column)
			
			# if there is no numeric column
			if(n == 0) {
				circos.trackPlotRegion(ylim = c(0.5, 1 + 0.5), panel.fun = function(x, y) {
							
						chr = get.current.chromosome()
						l = data[[1]] == chr
						df = data[l, , drop = FALSE]
						i = 1
						if(nrow(df)) {
							.param = new.env()
							assign("i", i, envir = .param)
							assign("stack", TRUE, envir = .param)
							assign("jitter", jitter, envir = .param)
							genomicPanelFun(df[2:3], df[-(1:3)][non.numeric.column], .param = .param)
						}

					}, ...)
			} else {
				circos.trackPlotRegion(ylim = c(0.5, n + 0.5), panel.fun = function(x, y) {
							
						chr = get.current.chromosome()
						for(i in seq_len(n)) {
							l = data[[1]] == chr
							df = data[l, , drop = FALSE]
							if(nrow(df)) {
								.param = new.env()
								assign("i", i, envir = .param)
								assign("stack", TRUE, envir = .param)
								assign("numeric.column", 1, envir = .param)
								assign("jitter", jitter, envir = .param)
								genomicPanelFun(df[2:3], df[-(1:3)][c(numeric.column[i], non.numeric.column)], .param = .param)
							}
						}

					}, ...)
			}
		}			
		
	} else {
		# auto calculate ylim
		if(is.null(ylim)) {
			if(is.dataFrameList(data)) {
				ylim = range(unlist(lapply(seq_along(data), function(i) {
					gr = data[[i]]
					if(is.na(numeric.column[i])) {
						stop_wrap("There is no numeric column in one of your data frame which calculation of `ylim` depends on. Or you can set `ylim` explicitely.")
					}
					range(unlist(lapply(gr[-(1:3)][ numeric.column[i] ], range, na.rm = TRUE)))
				})))
			} else {
				if(length(numeric.column) == 0) {
					stop_wrap("There is no numeric column in your data frame which calculation of `ylim` depends on. Or you can set `ylim` explicitely.")
				}
				ylim = range(unlist(lapply(data[-(1:3)][numeric.column], range, na.rm = TRUE)))
			}

			if(ylim[1] == ylim[2]) {
				stop_wrap("It seems the data points are all the same. Please explicitly set values to `ylim`.")
			}
		}

		if(is.dataFrameList(data)) {
			circos.trackPlotRegion(ylim = ylim, panel.fun = function(x, y) {
					
					chr = get.current.chromosome()
					for(i in seq_along(data)) {
						l = data[[i]][, 1] == chr
						df = data[[i]][l, , drop = FALSE]
						if(nrow(df)) {
							.param = new.env()
							assign("i", i, envir = .param)
							if(!is.na(numeric.column[i])) {
								assign("numeric.column", numeric.column[i], envir = .param)
							}
							genomicPanelFun(df[2:3], df[-(1:3)], .param = .param)
						}
					}
				}, ...)
		} else {
			circos.trackPlotRegion(ylim = ylim, panel.fun = function(x, y) {
					
					chr = get.current.chromosome()
					df = data[data[[1]] == chr, , drop = FALSE]
					if(nrow(df)) {
						.param = new.env()
						assign("i", 1, envir = .param)
						if(length(numeric.column)) {
							assign("numeric.column", numeric.column, envir = .param)
						}
						genomicPanelFun(df[2:3], df[-(1:3)], .param = .param)
					}
				}, ...)
		}
	}
	
}

# == title
# Create a track for genomic graphics
#
# == param
# -... Pass to `circos.genomicTrackPlotRegion`.
#
# == details
# shortcut function of `circos.genomicTrackPlotRegion`.
#
circos.genomicTrack = function(...) {
	circos.genomicTrackPlotRegion(...)
}


# == title
# Which data that ``panel.fun`` is using
#
# == param
# -... Invisible arguments that users do not need to care
#
# == details
# The function should only be put inside ``panel.fun`` when using `circos.genomicTrackPlotRegion`.
#
# If ``stack`` is set to ``TRUE`` in `circos.genomicTrackPlotRegion`, the returned value
# indicates which stack the function will be applied to.
#
# If ``data`` is a list of data frames, the value
# indicates which data frame is being used. Please see the vignette to get a more clear explanation.
getI = function(...) {
	args = list(...)
	if(is.null(args$.param)) {
		stop_wrap("Maybe you should call like `getI(...)`")
	}
	.param = args$.param
	return(.param$i)
}


# == title
# Add points to a plotting region, specifically for genomic graphics
#
# ==param
# -region A data frame contains 2 columns which correspond to start positions and end positions.
# -value  A data frame contains values and other information.
# -numeric.column Which column in ``value`` data frame should be taken as y-value.
#                 If it is not defined, the whole numeric columns in ``value`` will be taken.
# -sector.index Index of sector.
# -track.index Index of track.
# -posTransform Self-defined function to transform genomic positions, see `posTransform.default` for explanation
# -col Color of points. If there is only one numeric column, the length of ``col`` can be either one or number of rows of ``region``.
#      If there are more than one numeric column, the length of ``col`` can be either one or number of numeric columns.
#      Pass to `circos.points`.
# -pch Type of points. Settings are similar as ``col``. Pass to `circos.points`.
# -cex Size of points. Settings are similar as ``col``. Pass to `circos.points`.
# -bg Background colors for points.
# -... Mysterious parameters.
#
# == details
# The function is a low-level graphical function and usually is put in ``panel.fun`` when using `circos.genomicTrack`.
#
# The function behaviours differently from different formats of input, see the examples in 
# the "Examples" Section or go to https://jokergoo.github.io/circlize_book/book/modes-of-input.html for more details.
#
# == example
# circos.par("track.height" = 0.1)
# circos.initializeWithIdeogram(plotType = NULL)
#
# bed = generateRandomBed(nr = 100)
# circos.genomicTrack(bed, panel.fun = function(region, value, ...) {
#     circos.genomicPoints(region, value, pch = 16, cex = 0.5, ...)
# })
#
# circos.genomicTrack(bed, stack = TRUE, panel.fun = function(region, value, ...) {
#     circos.genomicPoints(region, value, pch = 16, cex = 0.5, ...)
#     i = getI(...)
#     cell.xlim = get.cell.meta.data("cell.xlim")
#     circos.lines(cell.xlim, c(i, i), lty = 2, col = "#00000040")
# })
#
# bed1 = generateRandomBed(nr = 100)
# bed2 = generateRandomBed(nr = 100)
# bed_list = list(bed1, bed2)
#
# # data frame list
# circos.genomicTrack(bed_list, panel.fun = function(region, value, ...) {
#     cex = (value[[1]] - min(value[[1]]))/(max(value[[1]]) - min(value[[1]]))
#     i = getI(...)
#     circos.genomicPoints(region, value, cex = cex, pch = 16, col = i, ...)
# })
#
# circos.genomicTrack(bed_list, stack = TRUE,
#     panel.fun = function(region, value, ...) {
#     cex = (value[[1]] - min(value[[1]]))/(max(value[[1]]) - min(value[[1]]))
#     i = getI(...)
#     circos.genomicPoints(region, value, cex = cex, pch = 16, col = i, ...)
#     cell.xlim = get.cell.meta.data("cell.xlim")
#     circos.lines(cell.xlim, c(i, i), lty = 2, col = "#00000040")
# })
#
# bed = generateRandomBed(nr = 100, nc = 4)
# circos.genomicTrack(bed, panel.fun = function(region, value, ...) {
#     cex = (value[[1]] - min(value[[1]]))/(max(value[[1]]) - min(value[[1]]))
#     circos.genomicPoints(region, value, cex = 0.5, pch = 16, col = 1:4, ...)
# })
#
# circos.genomicTrack(bed, stack = TRUE, panel.fun = function(region, value, ...) {
#     cex = (value[[1]] - min(value[[1]]))/(max(value[[1]]) - min(value[[1]]))
#     i = getI(...)
#     circos.genomicPoints(region, value, cex = cex, pch = 16, col = i, ...)
#     cell.xlim = get.cell.meta.data("cell.xlim")
#     circos.lines(cell.xlim, c(i, i), lty = 2, col = "#00000040")
# })
#
# circos.clear()
#
circos.genomicPoints = function(
	region, 
	value, 
	numeric.column = NULL, 
	sector.index = get.cell.meta.data("sector.index"),
    track.index = get.cell.meta.data("track.index"), 
    posTransform = NULL, 
	pch = par("pch"), 
	col = par("col"), 
	cex = par("cex"), 
	bg = par("bg"), 
	...) {
	
	nr = nrow(region)
	if(ncol(region) > 2 && inherits(region[, 1], c("character", "factor"))) {
		region = region[, -1, drop = FALSE]
	}
	
	if(is.atomic(value) && length(value) == 1) {
		value = data.frame(value = rep(value, nr))
	}
	if(is.atomic(value) && length(value) == nr) {
		value = data.frame(value = value)
	}
	if(!is.data.frame(value)) stop_wrap("`value` should be a data frame.")
	
	args = list(...)
	if(!is.null(args$.param)) {
		.param = args$.param
		if(!is.null(.param$stack)) {
			if(.param$stack && is.null(numeric.column)) {
				if(is.null(.param$jitter)) {
					value = data.frame(hline = rep(.param$i, nr))
				} else {
					value = data.frame(hline = rep(.param$i, nr) + (runif(nr) - 0.5)*abs(.param$jitter))
				}
				numeric.column = 1
			}
		} else if(!is.null(.param$numeric.column) && is.null(numeric.column)) {
			numeric.column = .param$numeric.column
		}
	}
	
	if(is.vector(value) && !is.list(value) && length(value) == 1) {
		value = data.frame(value = rep(value, nr))
		numeric.column = 1
	} else if(is.vector(value) && !is.list(value) && length(value) == nr) {
		value = data.frame(value = value)
		numeric.column = 1
	}

	if(ncol(value) == 1) numeric.column = 1
	
	if(!is.null(posTransform)) {
		region = posTransform(region)
	}
	
	if(is.null(numeric.column)) {
		numeric.column = which(as.logical(sapply(value, is.numeric)))
		if(length(numeric.column) == 0) {
			stop_wrap("Cannot find numeric column.")
		}
	}
	
	nc = length(numeric.column)
	pch = .normalizeGraphicalParam(pch, nc, nr, "pch")
	col = .normalizeGraphicalParam(col, nc, nr, "col")
	cex = .normalizeGraphicalParam(cex, nc, nr, "cex")
	bg = .normalizeGraphicalParam(bg, nc, nr, "cex")
	
	if(nc == 1) {
		circos.points( (region[[1]] + region[[2]])/2, value[[ numeric.column ]], 
			pch = pch, col = col, cex = cex, bg = bg,
			sector.index = sector.index, track.index = track.index )
	} else {
		for(i in seq_len(nc)) {
			circos.points( (region[[1]] + region[[2]])/2, value[[ numeric.column[i] ]], 
				pch = pch[i], col = col[i], cex = cex[i], bg = bg[i],
				sector.index = sector.index, track.index = track.index ) 
		}
	}
}

# == title
# Add lines to a plotting region, specifically for genomic graphics
#
# == param
# -region A data frame contains 2 column which correspond to start positions and end positions.
# -value  A data frame contains values and other information.
# -numeric.column Which column in ``value`` data frame should be taken as y-value.
#                 If it is not defined, the whole numeric columns in ``value`` will be taken.
# -sector.index Index of sector.
# -track.index Index of track.
# -posTransform Self-defined function to transform genomic positions, see `posTransform.default` for explaination.
# -col col of lines/areas. If there are more than one numeric column, the length of ``col`` can be either one or number of numeric columns.
#      If there is only one numeric column and type is either ``segment`` or ``h``, 
#      the length of ``col`` can be either one or number of rows of ``region``.
#      pass to `circos.lines`
# -lwd Settings are similar as ``col``. Pass to `circos.lines`.
# -lty Settings are similar as ``col``. Pass to `circos.lines`.
# -type There is an additional option ``segment`` which plot segment lines from start position to end position. Settings are similar as ``col``. Pass to `circos.lines`. 
# -area Settings are similar as ``col``. Pass to `circos.lines`.
# -area.baseline Deprecated, use ``baseline`` instead.
# -baseline Settings are similar as ``col``. Pass to `circos.lines`.
# -border Settings are similar as ``col``. Pass to `circos.lines`.
# -pt.col Settings are similar as ``col``. Pass to `circos.lines`.
# -cex Settings are similar as ``col``. Pass to `circos.lines`.
# -pch Settings are similar as ``col``. Pass to `circos.lines`.
# -... Mysterious parameters.
#
# == details
# The function is a low-level graphical function and usually is put in ``panel.fun`` when using `circos.genomicTrack`.
#
# The function behaviours differently from different formats of input, see the examples in 
# the "Examples" Section or go to https://jokergoo.github.io/circlize_book/book/modes-of-input.html for more details.
#
# == examples
# \donttest{
# ### test bed
# circos.par("track.height" = 0.1)
# circos.initializeWithIdeogram(plotType = NULL)
#
# bed = generateRandomBed(nr = 100)
# circos.genomicTrack(bed, panel.fun = function(region, value, ...) {
#     circos.genomicLines(region, value, type = "l", ...)
# })
#
# bed1 = generateRandomBed(nr = 100)
# bed2 = generateRandomBed(nr = 100)
# bed_list = list(bed1, bed2)
#
# circos.genomicTrack(bed_list, panel.fun = function(region, value, ...) {
#     i = getI(...)
#     circos.genomicLines(region, value, col = i, ...)
# })
#
# circos.genomicTrack(bed_list, stack = TRUE, 
#     panel.fun = function(region, value, ...) {
#     i = getI(...)
#     circos.genomicLines(region, value, col = i, ...)
# })
#
# bed = generateRandomBed(nr = 100, nc = 4)
# circos.genomicTrack(bed, panel.fun = function(region, value, ...) {
#     circos.genomicLines(region, value, col = 1:4, ...)
# })
#
# circos.genomicTrack(bed, stack = TRUE, panel.fun = function(region, value, ...) {
#     i = getI(...)
#     circos.genomicLines(region, value, col = i, ...)
# })
#
# bed = generateRandomBed(nr = 100)
# circos.genomicTrack(bed, panel.fun = function(region, value, ...) {
#     circos.genomicLines(region, value, type = "segment", lwd = 2, ...)
# })
#
# circos.clear()
# }
circos.genomicLines = function(
	region, 
	value, 
	numeric.column = NULL, 
	sector.index = get.current.sector.index(),
    track.index = get.current.track.index(), 
    posTransform = NULL, 
	col = ifelse(area, "grey", "black"), 
	lwd = par("lwd"),
    lty = par("lty"), 
    type = "l",
    area = FALSE, 
    area.baseline = NULL, 
    border = "black", 
    baseline = "bottom",
    pt.col = par("col"), 
    cex = par("cex"), 
    pch = par("pch"), 
    ...) {
	
	if(!is.null(area.baseline)) {
		baseline = area.baseline
		warning_wrap("`area.baseline` is deprecated, please use `baseline` instead.")
	}
	nr = nrow(region)
	if(ncol(region) > 2 && inherits(region[, 1], c("character", "factor"))) {
		region = region[, -1, drop = FALSE]
	}

	if(is.atomic(value) && length(value) == 1) {
		value = data.frame(value = rep(value, nr))
	}
	if(is.atomic(value) && length(value) == nr) {
		value = data.frame(value = value)
	}
	if(!is.data.frame(value)) stop_wrap("`value` should be a data frame.")
	
	args = list(...)
	if(!is.null(args$.param)) {
		.param = args$.param
		if(!is.null(.param$stack)) {
			if(.param$stack && is.null(numeric.column)) {
				value = data.frame(hline = rep(.param$i, nr))
				numeric.column = 1
				type = rep("segment", length(type))
			}
		} else if(!is.null(.param$numeric.column) && is.null(numeric.column)) {
			numeric.column = .param$numeric.column
		}
	}
	
	if(is.vector(value) && !is.list(value) && length(value) == 1) {
		value = data.frame(value = rep(value, nr))
		numeric.column = 1
	}
	if(is.vector(value) && !is.list(value) && length(value) == nr) {
		value = data.frame(value = value)
		numeric.column = 1
	}
	if(ncol(value) == 1) numeric.column = 1

	if(!is.null(posTransform)) {
		region = posTransform(region)
	}

	if(is.null(numeric.column)) {
		numeric.column = which(as.logical(sapply(value, is.numeric)))
		if(length(numeric.column) == 0) {
			stop_wrap("Cannot find numeric column.")
		}
	}

	nc = length(numeric.column)
	
	if(all(type %in% c("h", "segment"))) {
		col = .normalizeGraphicalParam(col, nc, nr, "col")
		lwd = .normalizeGraphicalParam(lwd, nc, nr, "col")
		lty = .normalizeGraphicalParam(lty, nc, nr, "col")
	} else {
		col = .normalizeGraphicalParam(col, nc, 1, "col")
		lwd = .normalizeGraphicalParam(lwd, nc, 1, "col")
		lty = .normalizeGraphicalParam(lty, nc, 1, "col")
	}
	pt.col = .normalizeGraphicalParam(pt.col, nc, 1, "col")
	cex = .normalizeGraphicalParam(cex, nc, 1, "col")
	pch = .normalizeGraphicalParam(pch, nc, 1, "col")
	type = .normalizeGraphicalParam(type, nc, 1, "col")
	area = .normalizeGraphicalParam(area, nc, 1, "col")
	baseline = .normalizeGraphicalParam(baseline, nc, 1, "col")
	border = .normalizeGraphicalParam(border, nc, 1, "col")

	if(!is.null(args$hline)) {
		# for(i in seq_len(nr)) {
		# 	circos.lines( c(region[i, 1], region[i, 2]), c(value[i, numeric.column], value[i, numeric.column]), 
		# 		col = col, lwd = lwd, lty = lty, type = "l",
		# 		sector.index = sector.index, track.index = track.index )
		# }
		circos.segments( region[, 1], value[, numeric.column], region[, 2], value[, numeric.column], 
				col = col, lwd = lwd, lty = lty, 
				sector.index = sector.index, track.index = track.index )
	} else if(nc == 1) {
		if(type == "segment") {
			# for(i in seq_len(nr)) {
			# 	circos.lines( c(region[i, 1], region[i, 2]), c(value[i, numeric.column], value[i, numeric.column]), 
			# 		col = col[i], lwd = lwd[i], lty = lty[i], type = "l",
			# 		sector.index = sector.index, track.index = track.index )
			# }
			circos.segments( region[, 1], value[, numeric.column], region[, 2], value[, numeric.column], 
					col = col, lwd = lwd, lty = lty, 
					sector.index = sector.index, track.index = track.index )
		} else {
			circos.lines( (region[[1]] + region[[2]])/2, value[[ numeric.column ]], 
				col = col, lwd = lwd, lty = lty, type = type, 
				area = area, baseline = baseline, 
				border = border, pt.col = pt.col, cex = cex, pch = pch,
				sector.index = sector.index, track.index = track.index )
		}
	} else {
		for(i in seq_len(nc)) {
			if(type[i] == "segment") {
				# for(k in seq_len(nr)) {
				# 	circos.lines( c(region[k, 1], region[k, 2]), c(value[k, numeric.column[i] ], value[k, numeric.column[i] ]), 
				# 		col = col[i], lwd = lwd[i], lty = lty[i], type = "l",
				# 		sector.index = sector.index, track.index = track.index )
				# }
				circos.segments( region[, 1], value[, numeric.column[i] ], region[, 2], value[, numeric.column[i] ], 
						col = col[i], lwd = lwd[i], lty = lty[i], type = "l",
						sector.index = sector.index, track.index = track.index )
			} else {
				circos.lines( (region[[1]] + region[[2]])/2, value[[ numeric.column[i] ]], 
					col = col[i], lwd = lwd[i], lty = lty[i], type = type[i], 
					area = area[i], baseline = baseline[i], 
					border = border[i], pt.col = pt.col[i], cex = cex[i], pch = pch[i],
					sector.index = sector.index, track.index = track.index )
			}
		}
	}
}	

# == title
# Draw rectangle-like grid, specifically for genomic graphics
#
# == param
# -region A data frame contains 2 column which correspond to start positions and end positions.
# -value  A data frame contains values and other information.
# -ytop A vector or a single value indicating top position of rectangles.
# -ybottom A vector or a single value indicating bottom position of rectangles.
# -ytop.column If ``ytop`` is in ``value``, the index of the column.
# -ybottom.column If ``ybottom`` is in ``value``, the index of the column.
# -sector.index Index of sector.
# -track.index Index of track.
# -posTransform Self-defined function to transform genomic positions, see `posTransform.default` for explaination.
# -col The length of ``col`` can be either one or number of rows of ``region``. Pass to `circos.rect`.
# -border Settings are similar as ``col``. Pass to `circos.rect`.
# -lty Settings are similar as ``col``. Pass to `circos.rect`.
# -... Mysterious parameters.
#
# == details
# The function is a low-level graphical function and usually is put in ``panel.fun`` when using `circos.genomicTrack`.
#
# The function behaviours differently from different formats of input, see the examples in 
# the "Examples" Section or go to https://jokergoo.github.io/circlize_book/book/modes-of-input.html for more details.
#
# == example
# \donttest{
# circos.par("track.height" = 0.1, cell.padding = c(0, 0, 0, 0))
# circos.initializeWithIdeogram(plotType = NULL)
#
# bed1 = generateRandomBed(nr = 100)
# bed2 = generateRandomBed(nr = 100)
# bed_list = list(bed1, bed2)
# f = colorRamp2(breaks = c(-1, 0, 1), colors = c("green", "black", "red"))
# circos.genomicTrack(bed_list, stack = TRUE,
#     panel.fun = function(region, value, ...) {
#  
#     circos.genomicRect(region, value, col = f(value[[1]]), 
#         border = NA, ...)
#     i = getI(...)
#     cell.xlim = get.cell.meta.data("cell.xlim")
#     circos.lines(cell.xlim, c(i, i), lty = 2, col = "#000000")
# })
#
# circos.genomicTrack(bed_list, ylim = c(0, 3),
#     panel.fun = function(region, value, ...) {
#     i = getI(...)
#     circos.genomicRect(region, value, ytop = i+0.4, ybottom = i-0.4, col = f(value[[1]]), 
#         border = NA, ...)
#   
#     cell.xlim = get.cell.meta.data("cell.xlim")
#     circos.lines(cell.xlim, c(i, i), lty = 2, col = "#000000")
# })
#
# circos.genomicTrack(bed1, panel.fun = function(region, value, ...) {
#     circos.genomicRect(region, value, col = "red", border = NA, ...)
#
# })
#
# circos.genomicTrack(bed_list, panel.fun = function(region, value, ...) {
#     i = getI(...)
#     circos.genomicRect(region, value, col = i, border = NA, ...)
#
# })
#
# circos.clear()
# }
circos.genomicRect = function(
	region, 
	value = NULL, 
	ytop = NULL, 
	ybottom = NULL, 
	ytop.column = NULL, 
	ybottom.column = NULL,
	sector.index = get.current.sector.index(),
    track.index = get.current.track.index(), 
    posTransform = NULL, 
	col = NA, 
	border = "black", 
	lty = par("lty"), 
	...) {
	
	if(ncol(region) > 2 && inherits(region[, 1], c("character", "factor"))) {
		region = region[, -1, drop = FALSE]
	}
	nr = nrow(region)
	
	args = list(...)
	if(!is.null(args$.param)) {
		.param = args$.param
		if(!is.null(.param$stack)) {
			if(.param$stack) {
				if(is.null(ytop)) ytop = .param$i + 0.5
				if(is.null(ybottom)) ybottom = .param$i - 0.5
			}
		}
	}
	
	if(is.atomic(value) && length(value) == 1) {
		value = data.frame(value = rep(value, nr))
	}
	if(is.atomic(value) && length(value) == nr) {
		value = data.frame(value = value)
	}
	
	# 1. check ytop and ybottom
	# 2. check ytop.colum and ybottom.column
	
	if(!is.null(ytop)) {
		if(length(ytop) == 1) {
			ytop = rep(ytop, nr)
		}
		value = cbind(value, ytop)
		ytop.column = ncol(value)
	}
	
	if(!is.null(ybottom)) {
		if(length(ybottom) == 1) {
			ybottom = rep(ybottom, nr)
		}
		value = cbind(value, ybottom)
		ybottom.column = ncol(value)
	}
	if(is.matrix(value)) value = as.data.frame(value)
	if(!is.data.frame(value)) stop_wrap("`value` should be a data frame.")
	
	ylim = get.cell.meta.data("ylim", sector.index = sector.index, track.index = track.index)
	if(is.null(ybottom.column) && is.null(ytop.column)) {
		# if no ybottom and ytop column are set, the rect will draw along whole ylim
		value = cbind(value, rep(ylim[2], nr), rep(ylim[1], nr))
		ytop.column = ncol(value) - 1
		ybottom.column = ncol(value)
	} else if(is.null(ybottom.column)) {
		value = cbind(value, rep(ylim[1], nr))
		ybottom.column = ncol(value)
	} else if(is.null(ytop.column)) {
		value = cbind(value, rep(ylim[2], nr))
		ytop.column = ncol(value)
	}

	if(!is.null(posTransform)) {
		region = posTransform(region)
	}
	
	if(length(ytop.column) > 1) {
		stop_wrap("Only one ytop columns is allowed.")
	}
	if(length(ybottom.column) > 1) {
		stop_wrap("Only one ybottom columns is allowed.")
	}

	col = .normalizeGraphicalParam(col, 1, nr, "col")
	border = .normalizeGraphicalParam(border, 1, nr, "border")
	lty = .normalizeGraphicalParam(lty, 1, nr, "lty")
	
	# for(i in seq_len(nr)) {
	# 	circos.rect(region[i, 1], value[i, ybottom.column], region[i, 2], value[i, ytop.column],
	# 	            sector.index = sector.index, track.index = track.index,
	# 				col = col[i], border = border[i], lwd = lwd[i], lty = lty[i])
	# }
	circos.rect(region[, 1], value[, ybottom.column], region[, 2], value[, ytop.column],
		            sector.index = sector.index, track.index = track.index,
					col = col, border = border, lty = lty)

}

# == title
# Draw text in a cell, specifically for genomic graphics
#
# == param
# -region A data frame contains 2 column which correspond to start positions and end positions.
# -value  A data frame contains values and other information.
# -y A vector or a single value indicating position of text.
# -labels Labels of text corresponding to each genomic positions.
# -labels.column If labels are in ``value``, index of column in ``value``.
# -numeric.column Which column in ``value`` data frame should be taken as y-value.
#                 If it is not defined, only the first numeric columns in ``value`` will be taken.
# -sector.index Index of sector.
# -track.index Index of track.
# -posTransform Self-defined function to transform genomic positions, see `posTransform.default` for explanation.
# -facing Passing to `circos.text`. Settings are similar as ``col``.
# -niceFacing   Should the facing of text be adjusted to fit human eyes?
# -direction Deprecated, use ``facing`` instead. 
# -adj Pass to `circos.text`. Settings are similar as ``col``.
# -cex Pass to `circos.text`. Settings are similar as ``col``.
# -col Pass to `circos.text`. The length of ``col`` can be either one or number of rows of ``region``.
# -font Pass to `circos.text`. Settings are similar as ``col``.
# -padding pass to ``posTransform`` if it is set as `posTransform.text`.
# -extend pass to ``posTransform`` if it is set as `posTransform.text`.
# -align_to pass to ``posTransform`` if it is set as `posTransform.text`.
# -... Mysterious parameters.
#
# == details
# The function is a low-level graphical function and usually is put in ``panel.fun`` when using `circos.genomicTrack`.
#
# == example
# circos.par("track.height" = 0.1, cell.padding = c(0, 0, 0, 0))
# circos.initializeWithIdeogram(plotType = NULL)
#
# bed = generateRandomBed(nr = 20)
#
# circos.genomicTrack(bed, ylim = c(0, 1), panel.fun = function(region, value, ...) {
#     circos.genomicText(region, value, y = 0.5, labels = "text", ...)
# })
#
# bed = cbind(bed, sample(letters, nrow(bed), replace = TRUE))
# circos.genomicTrack(bed, panel.fun = function(region, value, ...) {
#     circos.genomicText(region, value, labels.column = 2, ...)
# })
#
# circos.clear()
circos.genomicText = function(
	region, 
	value = NULL, 
	y = NULL, 
	labels = NULL, 
	labels.column = NULL,
	numeric.column = NULL, 
	sector.index = get.current.sector.index(), 
	track.index = get.current.track.index(), 
	posTransform = NULL, 
	direction = NULL, 
	facing = "inside", 
	niceFacing = FALSE,
	adj = par("adj"), 
	cex = 1, 
	col = "black", 
	font = par("font"), 
	padding = 0,
	extend = 0, 
	align_to = "region", 
	...) {
	
	if(!is.null(direction)) {
		facing = direction
		warning_wrap("`direction` is deprecated, please use `facing` instead.")
	}
	
	if(ncol(region) > 2 && inherits(region[, 1], c("character", "factor"))) {
		region = region[, -1, drop = FALSE]
	}
	nr = nrow(region)
	
	if(is.vector(value) && !is.list(value) && length(value) == 1) {
		value = data.frame(value = rep(value, nr))
		numeric.column = 1
	}
	if(is.vector(value) && !is.list(value) && length(value) == nr) {
		value = data.frame(value = value)
		numeric.column = 1
	}
	
	args = list(...)
	if(!is.null(args$.param)) {
		.param = args$.param
		if(!is.null(.param$stack)) {
			if(.param$stack && is.null(numeric.column)) {
				value = data.frame(hline = rep(.param$i, nr))
				numeric.column = 1
			}
		} else if(!is.null(.param$numeric.column) && is.null(numeric.column)) {
			numeric.column = .param$numeric.column
		}
	}
	
	if(!is.null(y)) {
		if(length(y) == 1) {
			y = rep(y, nr)
		}
		value = cbind(value, y)
		numeric.column = ncol(value)
	}
	if(is.matrix(value)) value = as.data.frame(value)
	if(!is.data.frame(value)) stop_wrap("`value` should be a data frame.")

	if(is.null(labels) && is.null(labels.column)) {
		stop_wrap("You should either specify `labels` or `labels.column`.")
	}
	
	if(!is.null(labels)) {
		if(is.vector(labels) && !is.list(labels) && length(labels) == 1) {
			value = cbind(value, labels = rep(labels, nr))
			labels.column = ncol(value)
		}
		if(is.vector(labels) && !is.list(labels) && length(labels) == nr) {
			value = cbind(value, labels = labels)
			labels.column = ncol(value)
		}
	}

	if(is.null(numeric.column)) {
		numeric.column = which(as.logical(sapply(value, is.numeric)))
		if(length(numeric.column) == 0) {
			stop_wrap("Cannot find numeric column.")
		}
		numeric.column = numeric.column[1]
	}
	
	if(length(numeric.column) > 1) {
		stop_wrap("You can only have one numeric column.")
	}
	
	if(!is.null(posTransform)) {
	
		# check settings when it is text-specific transformation
		if(identical(posTransform, posTransform.text)) {
			if(! facing %in% c("clockwise", "reverse.clockwise")) {
				stop_wrap("Only support `facing` in c('clockwise', 'reverse.clockwise') if `posTransform` is `posTransform.text`.")
			}
			region = posTransform(region, value[[ numeric.column ]], value[[labels.column]], cex, font, padding = padding, extend = extend, align_to = align_to)
		} else {
			region = posTransform(region)
		}
	}
	
	nc = length(numeric.column)

	col = .normalizeGraphicalParam(col, nc, nr, "col")
	cex = .normalizeGraphicalParam(cex, nc, nr, "cex")
	font = .normalizeGraphicalParam(font, nc, nr, "font")

	circos.text( (region[[1]] + region[[2]])/2, value[[ numeric.column ]], value[[labels.column]],
		facing = facing, niceFacing = niceFacing, adj = adj, cex = cex, col = col, font = font,
		sector.index = sector.index, track.index = track.index)

}


# == title
# Add links from two sets of genomic positions
#
# == param
# -region1 A data frame in bed format.
# -region2 A data frame in bed format.
# -rou Pass to `circos.link`.
# -rou1 Pass to `circos.link`.
# -rou2 Pass to `circos.link`.
# -col Pass to `circos.link`, length can be either one or nrow of ``region1``.
# -lwd Pass to `circos.link`, length can be either one or nrow of ``region1``.
# -lty Pass to `circos.link`, length can be either one or nrow of ``region1``.
# -border Pass to `circos.link`, length can be either one or nrow of ``region1``.
# -... Pass to `circos.link`.
#
# == details
# Of course, number of rows should be same in ``region1`` and ``region2``.
#
# If you want to have more controls on links, please use `circos.link` directly.
#
# == seealso
# https://jokergoo.github.io/circlize_book/book/genomic-plotting-region.html#genomic-links
#
# == example
# \donttest{
# set.seed(123)
#
# bed1 = generateRandomBed(nr = 100)
# bed1 = bed1[sample(nrow(bed1), 20), ]
# bed2 = generateRandomBed(nr = 100)
# bed2 = bed2[sample(nrow(bed2), 20), ]
# circos.par("track.height" = 0.1, cell.padding = c(0, 0, 0, 0))
# circos.initializeWithIdeogram()
#
# circos.genomicLink(bed1, bed2, col = sample(1:5, 20, replace = TRUE), border = NA)
# circos.clear()
# }
circos.genomicLink = function(
	region1, 
	region2, 
	rou = get_most_inside_radius(), 
	rou1 = rou, 
	rou2 = rou,
    col = "black", 
    lwd = par("lwd"), 
    lty = par("lty"), 
    border = col, 
    ...) {

	if(circos.par$ring) {
		l = region1[, 2] > region1[, 3]
		if(any(l)) {
			region1[l, 2] = region1[l, 2] - diff(get.sector.data()[c("min.value", "max.value")])
		}
		l = region2[, 2] > region2[, 3]
		if(any(l)) {
			region2[l, 2] = region2[l, 2] - diff(get.sector.data()[c("min.value", "max.value")])
		}
	}
	
	region1 = validate_data_frame(region1)
	region2 = validate_data_frame(region2)

	if(ncol(region1) == 2) {
		region1[, 3] = region1[, 2]
	}
	if(ncol(region2) == 2) {
		region2[, 3] = region2[, 2]
	}

	region1 = normalizeToDataFrame(region1, sort = FALSE)
	region2 = normalizeToDataFrame(region2, sort = FALSE)
	
	if(is.dataFrameList(region1)) {
		stop_wrap("`region1` can not be a region list.")
	}
	
	if(is.dataFrameList(region1)) {
		stop_wrap("`region1` can not be a region list.")
	}
	
	if(nrow(region1) != nrow(region2)) {
		stop_wrap("nrow of `region1` and `region2` differ. Please check the chromosome column and make sure all the chromosomes are in the circular layout.")
	}
	
	nr = nrow(region1)
	
	rou1 = .normalizeGraphicalParam(rou1, 1, nr, "rou")
	rou2 = .normalizeGraphicalParam(rou2, 1, nr, "rou")
	col = .normalizeGraphicalParam(col, 1, nr, "col")
	lwd = .normalizeGraphicalParam(lwd, 1, nr, "lwd")
	lty = .normalizeGraphicalParam(lty, 1, nr, "lty")
	border = .normalizeGraphicalParam(border, 1, nr, "border")

	for(i in seq_len(nr)) {
		if(region1[i, 2] == region1[i, 3]) {
			point1 = region1[i, 2]
		} else {
			point1 = c(region1[i, 2], region1[i, 3])
		}
		if(region2[i, 2] == region2[i, 3]) {
			point2 = region2[i, 2]
		} else {
			point2 = c(region2[i, 2], region2[i, 3])
		}
		circos.link(region1[i, 1], point1,
		            region2[i, 1], point2,
					rou1 = rou1[i], rou2 = rou2[i], col = col[i], lwd = lwd[i],
					lty = lty[i], border = border[i], ...)
	}
}


# == title
# Add genomic position transformation lines between tracks
#
# == param
# -data A data frame containing genomic data.
# -track.height Height of the track.
# -posTransform Genomic position transformation function, see `posTransform.default` for an example.
# -horizontalLine Whether to draw horizontal lines which indicate region width .
# -track.margin Margin of tracks.
# -direction Type of the transformation. ``inside`` means position transformed track are located inside 
#       and ``outside`` means position transformed track are located outside.
# -col Color of lines, can be length of one or nrow of ``data``.
# -lwd Width of lines.
# -lty Style of lines.
# -... Pass to `circos.trackPlotRegion`.
#
# == details
# There is one representative situation when such position transformation needs to be applied. 
# For example, there are two sets of regions in a chromosome in which regions in one set regions are
# quite densely to each other and regions in other set are far from others. Heatmap or text is going
# to be drawn on the next track. If there is no position transformation, heatmap or text for those
# dense regions would be overlapped and hard to identify, also ugly to visualize. Thus, a way
# to transform original positions to new positions would help for the visualization. 
circos.genomicPosTransformLines = function(
	data, 
	track.height = 0.1, 
	posTransform = NULL, 
	horizontalLine = c("none", "top", "bottom", "both"), 
	track.margin = c(0, 0),
	direction = c("inside", "outside"), 
	col = "black", 
	lwd = par("lwd"),
    lty = par("lty"), 
    ...) {
	
	horizontalLine = match.arg(horizontalLine)[1]

	data = validate_data_frame(data)
	data = normalizeToDataFrame(data)
	
	if(is.dataFrameList(data)) {
		stop_wrap("`data` can not be list of regions.")
	}
	
	nr = nrow(data)
	if(length(col) == 1) {
		col = rep(col, nr)
	}
	if(length(lwd) == 1) {
		lwd = rep(lwd, nr)
	}
	if(length(lty) == 1) {
		lty = rep(lty, nr)
	}

	o.track.margin = circos.par("track.margin")
	circos.par(track.margin = track.margin)
	
	if(direction[1] == "default") direction = "outside"
	if(direction[1] == "reverse") direction = "inside"
	direction = match.arg(direction)[1]
	
	if(direction == "inside") {
		circos.genomicTrackPlotRegion(data, ylim = c(0, 1), bg.border = NA, track.height = track.height, panel.fun = function(region, value, ...) {
			chr = get.current.chromosome()
			l = data[[1]] == chr
			if(!is.null(posTransform)) {
				if(is.function(posTransform)) {
					args = as.list(posTransform)
					if(length(args) == 2) {
						region_new = posTransform(region)
					} else if(length(args) == 3) {
						region_new = posTransform(region, value)
					}
				}
			} else {
				region_new  = region
			}
			
			# for(i in seq_len(nrow(region))) {
			# 	if(horizontalLine == "both" || horizontalLine == "top") {
			# 		circos.lines(c(region[i, 1], region[i, 2]), c(1, 1), col = col[l][i], lwd = lwd[l][i], lty = lty[l][i])
			# 	}
			# 	if(horizontalLine == "both" || horizontalLine == "bottom") {
			# 		circos.lines(c(region[i, 1], region[i, 2]), c(0, 0), col = col[l][i], lwd = lwd[l][i], lty = lty[l][i])
			# 	}
			# 	mid = (region[i, 1] + region[i, 2])/2
			# 	mid_new = (region_new[i, 1] + region_new[i, 2])/2
			# 	circos.lines(c(mid, mid, mid_new, mid_new), c(1, 2/3, 1/3, 0), col = col[l][i], lwd = lwd[l][i], lty = lty[l][i])
			# }
			nr = nrow(region)
			if(horizontalLine == "both" || horizontalLine == "top") {
				circos.segments(region[, 1], rep(1, nr), region[, 2], rep(1, nr), col = col[l], lwd = lwd[l], lty = lty[l])
			}
			if(horizontalLine == "both" || horizontalLine == "bottom") {
				circos.segments(region[, 1], rep(0, nr), region[, 2], rep(0, nr), col = col[l], lwd = lwd[l], lty = lty[l])
			}
			mid = (region[, 1] + region[, 2])/2
			mid_new = (region_new[, 1] + region_new[, 2])/2
			circos.segments(mid, rep(1, nr), mid, rep(2/3, nr), col = col[l], lwd = lwd[l], lty = lty[l])
			circos.segments(mid, rep(2/3, nr), mid_new, rep(1/3, nr), col = col[l], lwd = lwd[l], lty = lty[l])
			circos.segments(mid_new, rep(1/3, nr), mid_new, rep(0, nr), col = col[l], lwd = lwd[l], lty = lty[l])
		}, ...)
	} else {
		circos.genomicTrackPlotRegion(data, ylim = c(0, 1), bg.border = NA, track.height = track.height, panel.fun = function(region, value, ...) {
			chr = get.current.chromosome()
			l = data[[1]] == chr
			region_subset = data[l, , drop = FALSE]
			if(!is.null(posTransform)) {
				if(is.function(posTransform)) {
					args = as.list(posTransform)
					if(length(args) == 2) {
						region_new = posTransform(region)
					} else if(length(args) == 3) {
						region_new = posTransform(region, value)
					}
				}
			} else {
				region_new  = region
			}
			
			# for(i in seq_len(nrow(region))) {
			# 	if(horizontalLine == "both" || horizontalLine == "bottom") {
			# 		circos.lines(c(region[i, 1], region[i, 2]), c(0, 0), col = col[l][i], lwd = lwd[l][i], lty = lty[l][i])
			# 	}
			# 	if(horizontalLine == "both" || horizontalLine == "top") {
			# 		circos.lines(c(region[i, 1], region[i, 2]), c(1, 1), col = col[l][i], lwd = lwd[l][i], lty = lty[l][i])
			# 	}
			# 	mid = (region[i, 1] + region[i, 2])/2
			# 	mid_new = (region_new[i, 1] + region_new[i, 2])/2
			# 	circos.lines(c(mid, mid, mid_new, mid_new), c(0, 1/3, 2/3, 1), col = col[l][i], lwd = lwd[l][i], lty = lty[l][i])
			# }
			nr = nrow(region)
			if(horizontalLine == "both" || horizontalLine == "bottom") {
				circos.segments(region[, 1], rep(0, nr), region[, 2], rep(0, nr), col = col[l], lwd = lwd[l], lty = lty[l])
			}
			if(horizontalLine == "both" || horizontalLine == "top") {
				circos.segments(region[, 1], rep(1, nr), region[, 2], rep(1, nr), col = col[l], lwd = lwd[l], lty = lty[l])
			}
			mid = (region[, 1] + region[, 2])/2
			mid_new = (region_new[, 1] + region_new[, 2])/2
			circos.segments(mid, rep(0, nr), mid, rep(1/3, nr), col = col[l], lwd = lwd[l], lty = lty[l])
			circos.segments(mid, rep(1/3, nr), mid_new, rep(2/3, nr), col = col[l], lwd = lwd[l], lty = lty[l])
			circos.segments(mid_new, rep(2/3, nr), mid_new, rep(1, nr), col = col[l], lwd = lwd[l], lty = lty[l])
		}, ...)
	}
	
	circos.par(track.margin = o.track.margin)
}

# == title
# Calculate and add genomic density track
#
# == param
# -data A bed-file-like data frame or a list of data frames. If the input is a list of data frames.
#     there will be multiple density plot in one same track.
# -ylim.force Whether to force upper bound of ``ylim`` to be 1. Ignored if ``count_by`` is set to ``number``.
# -window.size Pass to `genomicDensity`.
# -overlap Pass to `genomicDensity`.
# -count_by Pass to `genomicDensity`.
# -col  Colors. It should be length of one. If ``data`` is a list of data frames, the length of ``col``
#       can also be the length of the list. If multiple sets of genomic regions are visualized in one
#       single track, you should set the colors with transparency to distinguish them.
# -lwd  Width of lines, the same setting as ``col`` argument.
# -lty  Style of lines, the same setting as ``col`` argument.
# -type Type of lines, see `circos.lines`.
# -area See `circos.lines`.
# -area.baseline Deprecated, use ``baseline`` instead.
# -baseline See `circos.lines`.
# -border See `circos.lines`.
# -... Pass to `circos.trackPlotRegion`.
#
# == details
# This function is a high-level graphical function, and it will create a new track.
#
# If you have multiple sets of genomic regions, you should make sure the density ranges 
# for all sets are similar, or I suggest you should put them into different tracks. One example
# can be found in the "Examples" Section where the density range for ``bed_list[[2]]`` is too high
# compared to the range for ``bed_list[[1]]``, thus, it is better to put the two sets of
# regions into two separate tracks.
#
# == seealso
# https://jokergoo.github.io/circlize_book/book/high-level-genomic-functions.html#genomic-density-and-rainfall-plot
#
# == example
# load(system.file(package = "circlize", "extdata", "DMR.RData"))
#
# # rainfall
# \donttest{
# circos.initializeWithIdeogram(plotType = c("axis", "labels"))
#
# bed_list = list(DMR_hyper, DMR_hypo)
# circos.genomicRainfall(bed_list, pch = 16, cex = 0.4, col = c("#FF000080", "#0000FF80"))
#
# circos.genomicDensity(bed_list[[1]], col = c("#FF000080"), track.height = 0.1)
# circos.genomicDensity(bed_list[[2]], col = c("#0000FF80"), track.height = 0.1)
# circos.clear()
#
# ############ draw the two densities in one track  #############
# circos.initializeWithIdeogram(plotType = c("axis", "labels"))
# circos.genomicDensity(bed_list, col = c("#FF000080", "#0000FF80"), track.height = 0.2)
# circos.clear()
# }
circos.genomicDensity = function(
	data, 
	ylim.force = FALSE, 
	window.size = NULL, 
	overlap = TRUE, 
	count_by = c("percent", "number"),
	col = ifelse(area, "grey", "black"), 
	lwd = par("lwd"), 
	lty = par("lty"), 
	type = "l",
	area = TRUE, 
	area.baseline = NULL, 
	baseline = 0, 
	border = NA, 
	...) {
	
	if(!is.null(area.baseline)) {
		baseline = area.baseline
		warning_wrap("`area.baseline` is deprecated, please use `baseline` instead.")
	}
	
	data = normalizeToDataFrame(data)
	
	if(!is.dataFrameList(data)) {
		data = list(data)
	}
	
	if(length(col) == 1) {
		col = rep(col, length(data))
	}
	if(length(lwd) == 1) {
		lwd = rep(lwd, length(data))
	}
	if(length(lty) == 1) {
		lty = rep(lty, length(data))
	}
	if(length(type) == 1) {
		type = rep(type, length(data))
	}
	if(length(area) == 1) {
		area = rep(area, length(data))
	}
	if(length(baseline) == 1) {
		baseline = rep(baseline, length(data))
	}
	if(length(border) == 1) {
		border = rep(border, length(data))
	}

	s = sapply(get.all.sector.index(), function(si) get.cell.meta.data("xrange", sector.index = si))
	if(is.null(window.size)) {
		window.size = 10^nchar(sum(s))/1000  # around 100 major ticks
		#cat(window.size, "is choosen as the window size.\n")
	}
	
	count_by = match.arg(count_by)[1]
	df = vector("list", length = length(data))
	for(i in seq_along(data)) {
		df[[i]] = genomicDensity(data[[i]], window.size = window.size, overlap = overlap, count_by = count_by)
	}
	if(ylim.force && count_by == "percent") {
		ymax = 1
	} else {
		ymax = max(sapply(df, function(gr) max(gr[[4]])))
	}
	if(length(df) == 1) {
		circos.genomicTrackPlotRegion(df[[1]], ylim = c(0, ymax), panel.fun = function(region, value, ...) {
			circos.genomicLines(region, value, col = col, lwd = lwd, lty = lty, type = type, 
				border = border, area = area, baseline = baseline) 
		}, ...)
	} else {
		circos.genomicTrackPlotRegion(df, ylim = c(0, ymax), panel.fun = function(region, value, ...) {
			i = getI(...)
			circos.genomicLines(region, value, col = col[i], lwd = lwd[i], lty = lty[i], type = type[i], 
				border = border[i], area = area[i], baseline = baseline[i]) 
		}, ...)
	}
}

# == title
# Calculate genomic region density
#
# == param
# -region Genomic positions. It can be a data frame with two
#     columns which are start positions and end positions on a single chromosome.
#     It can also be a bed-format data frame which contains the chromosome column.
# -window.size Window size to calculate genomic density
# -n.window number of windows, if it is specified, ``window.size`` is ignored
# -overlap Whether two neighbouring windows have half overlap
# -count_by How to count the value for each window, ``percent``: percent of the window covered by the input regions; ``number``: number of regions that overlap to the window.
# -chr.len the chromosome length. The value should be named vector
#
# == details
# It calculate the percent of each genomic windows that is covered by the input regions.
#
# == values
# If the input is a two-column data frame, the function returns a data frame with three columns: 
# start position, end position and the overlapping (value depends on the ``count_by`` argument). And if the input is a bed-format
# data frame, there will be an additionally chromosome name column.
#
# == example
# bed = generateRandomBed()
# bed = subset(bed, chr == "chr1")
# head(genomicDensity(bed))
# head(genomicDensity(bed, count_by = "number"))
genomicDensity = function(
	region, 
	window.size = 1e7, 
	n.window = NULL, 
	overlap = TRUE, 
	count_by = c("percent", "number"),
	chr.len = NULL) {
	
	region = validate_data_frame(region)

	if(is.character(region[, 1]) || is.factor(region[, 1])) {
		validate_region(region, check_chr = TRUE)
		region[, 1] = as.vector(region[, 1])
		all_chr = unique(region[, 1])
		if(!is.null(chr.len)) {
			if(length(all_chr) == 1 & length(chr.len) == 1) {
				names(chr.len) = all_chr[1]
			}
		}
		return(do.call("rbind", lapply(all_chr, function(chr) {
			l = region[,1] == chr
			if(is.null(chr.len)) {
				max_rg = NULL
				if(is.circos.initialized()) {
					if(chr %in% get.all.sector.index()) {
						max_rg = get.sector.data(sector.index = chr)["max.data"]
					} 
				}
			} else {
				if(chr %in% names(chr.len)) {
					max_rg = chr.len[chr]
				} else {
					max_rg = NULL
				}
			}
			df = genomicDensity(region[l, 2:3, drop = FALSE], window.size = window.size, overlap = overlap, chr.len = max_rg, count_by = count_by)
			cbind(chr = rep(chr, nrow(df)), df)
		})))
	}
	
	validate_region(region, 1, 2, check_chr = FALSE)
	if(ncol(region) >= 3) {
		if(is.numeric(region[, 1])) {
			if(max(region[, 1]) < 100) {
				return(do.call("rbind", lapply(unique(region[, 1]), function(chr) {
					l = region[, 1] == chr
					df = genomicDensity(region[l, 2:3, drop = FALSE], window.size = window.size, overlap = overlap, count_by = count_by)
					cbind(chr = rep(chr, nrow(df)), df)
				})))
			}
		}
	}

	region = region[, 1:2]
	
	region = sort_region(region)
	region = reduce_region(region)

	# make a segmentation
	if(!is.null(chr.len)) {
		max_pos = max(c(chr.len, max(region[[2]])))
	} else {
		max_pos = max(region[[2]])
	}
	if(overlap) {
		if(missing(n.window)) {
			b = seq(1, max_pos, by = window.size/2)
			s = b[-length(b)]
			s = s[-length(s)]
			e = s + window.size - 1
		} else {
			b = seq(1, max_pos, length.out = 2*n.window - 1)
			s = b[-length(b)]
			s = s[-length(s)]
			e = s + b[3] - b[1] - 1
		}
	} else {
		if(missing(n.window)) {
			b = seq(1, max_pos, by = window.size)
			s = b[-length(b)]
			e = s + window.size - 1
		} else {
			b = seq(1, max_pos, length.out = n.window)
			s = b[-length(b)]
			e = s + b[2] - b[1]	
		}
		
	}

	s = as.integer(s)
	e = as.integer(e)

	y = rep(0, length(s))
	names(y) = paste(s, e, sep = ",")
	
	windows = data.frame(start = s, end = e)
	
	op = overlap_region(windows, region, count_by = count_by)

	res = data.frame(start = s, end = e, value = op)
	return(res)
}

# == title
# Highlight chromosomes
#
# == param
# -... pass to `highlight.sector`
#
# == details
# This is only a shortcut function of `highlight.sector`.
#
highlight.chromosome = function(...) {
	
	highlight.sector(...)
}

continuousIndexSegment = function(x, n = NULL, loop = FALSE) {
	if(length(x) == 1) {
		return(list(x))
	} else {
		k = c(0, which(diff(x) > 1), length(x))
		lt = vector("list", length = length(k) - 1)
		for(i in seq_along(k)[-length(k)]) {
			lt[[i]] = x[(k[i] + 1):(k[i+1])]
		}
		
		if(loop && length(lt) > 1) {
			first = lt[[1]]
			last = lt[[length(lt)]]
			if(first[1] == 1 && last[length(last)] == n) {
				lt[[1]] = c(last, first)
				lt = lt[-length(lt)]
			}
		}
		
		return(lt)
	}
}

# == title
# Get current chromosome name
#
# == details
# The function is same as `get.current.sector.index` and
# should only be put inside ``panel.fun`` when using `circos.genomicTrackPlotRegion`.
get.current.chromosome = function() {
	get.current.sector.index()
}




is.dataFrameList = function(data) {
	is.list(data) && all(sapply(data, is.data.frame))
}


normalizeToDataFrame = function(data, sort = FALSE) {

	all.chr = get.all.sector.index()

	if(is.data.frame(data)) {
		data = as.data.frame(data)
		if(ncol(data) < 3) {
			stop_wrap("Your data frame is less than 3 column!.")
		}
		data = data[data[[1]] %in% all.chr, , drop = FALSE]
		if(sort) {
			data = data[order(data[[1]], data[[2]]), , drop = FALSE]
		}
		return(data)
	} else if(is.list(data) && all(sapply(data, is.data.frame))) {
		df = lapply(data, function(gr) {
			if(ncol(gr) < 3) {
				stop_wrap("Your data frame is less than 3 column!.")
			}
			gr = gr[gr[[1]] %in% all.chr, , drop = FALSE]
			if(sort) {
				gr = gr[order(gr[[1]], gr[[2]]), ]
			}
			return(gr)
		})
		return(df)
	} else if(inherits(df, "GRanges")) {
		df = as.data.frame(df)
		return(df)
	} else {
		stop_wrap("The format of `data` should only be a data frame or a list of data frames.")
	}
}


.normalizeGraphicalParam = function(x, nc, nr, name) {
	if(nc == 1) {
		if(!(length(x) == 1 || length(x) == nr)) {
			stop_wrap("The length of `", name, "` (", length(x), ") should be equal to 1 or the number of your regions (", nr, ").")
		} else if(length(x) == 1) {
			x = rep(x, nr)
		}
	} else {
		if(!(length(x) == 1 || length(x) == nc)) {
			stop_wrap("The length of `", name, "` (", length(x), ") should be equal to 1 or the number of your data column (", nc, ").")
		} else if(length(x) == 1) {
			x = rep(x, nc)
		}
	}
	return(x)
}

# == title
# Genomic rainfall plot
#
# == param
# -data A bed-file-like data frame or a list of data frames.
# -mode How to calculate the distance of two neighbouring regions, pass to `rainfallTransform`.
# -ylim ylim for rainfall plot track. If ``normalize_to_width`` is ``FALSE``, the value should correspond to ``log10(dist+1)``,
#       and if ``normalize_to_width`` is ``TRUE``, the value should correspond to ``log2(rel_dist)``.
# -col  Color of points. It should be length of one. If ``data`` is a list, the length of ``col``
#       can also be the length of the list.
# -pch  Style of points.
# -cex  Size of points.
# -normalize_to_width If it is ``TRUE``, the value is the relative distance divided by the width of the region.
# -... Pass to `circos.trackPlotRegion`.
#
# == details
# This is high-level graphical function, which mean, it will create a new track.
#
# Rainfall plot can be used to visualize distribution of regions. On the plot, y-axis
# corresponds to the distance to neighbour regions (log-based). So if there is a drop-down on
# the plot, it means there is a cluster of regions at that area.
#
# On the plot, y-axis are log10-transformed.
#
# == seealso
# https://jokergoo.github.io/circlize_book/book/high-level-genomic-functions.html#genomic-density-and-rainfall-plot
#
# == example
# \donttest{
# load(system.file(package = "circlize", "extdata", "DMR.RData"))
#
# # rainfall
# circos.initializeWithIdeogram(plotType = c("axis", "labels"))
#
# bed_list = list(DMR_hyper, DMR_hypo)
# circos.genomicRainfall(bed_list, pch = 16, cex = 0.4, col = c("#FF000080", "#0000FF80"))
#
# circos.genomicDensity(bed_list[[1]], col = c("#FF000080"), track.height = 0.1)
# circos.genomicDensity(bed_list[[2]], col = c("#0000FF80"), track.height = 0.1)
#
# circos.clear()
# }
circos.genomicRainfall = function(
	data, 
	mode = "min", 
	ylim = NULL, 
	col = "black", 
	pch = par("pch"), 
	cex = par("cex"), 
	normalize_to_width = FALSE, 
	...) {
	
	data = normalizeToDataFrame(data)
	
	if(!is.dataFrameList(data)) {
		data = list(data)
	}
	
	for(i in seq_along(data)) {
		validate_region(data[[i]], check_chr = TRUE)
	}

	if(length(col) == 1) {
		col = rep(col, length(data))
	}
	if(length(pch) == 1) {
		pch = rep(pch, length(data))
	}
	if(length(cex) == 1) {
		cex = rep(cex, length(data))
	}

	if(is.null(ylim)) {
		if(normalize_to_width) {
			ylim = c(-10, 10)
		} else {
			ylim = c(0, 9)
		}
 	}
	
	circos.genomicTrackPlotRegion(data, ylim = ylim, panel.fun = function(region, value, ...) {
		df = rainfallTransform(region, mode = mode, normalize_to_width = normalize_to_width)
		i = getI(...)
		if(normalize_to_width) {
			circos.genomicPoints(df[1:2], log10(df[3]), col = col[i], cex = cex[i], pch = pch[i])
		} else {
			circos.genomicPoints(df[1:2], log10(df[3]+1), col = col[i], cex = cex[i], pch = pch[i])
		}
	}, ...)
	
}

# == title
# Calculate inter-distance of genomic regions
#
# == param
# -region Genomic positions. It can be a data frame with two
#     columns which are start positions and end positions on a single chromosome.
#     It can also be a bed-format data frame which contains the chromosome column.
# -mode How to calculate inter-distance. For a region, there is a distance to the 
#       prevous region and also there is a distance to the next region. ``mode``
#       controls how to merge these two distances into one value.
# -normalize_to_width If it is ``TRUE``, the value is the relative distance divided by the width of the region.
#
# == values
# If the input is a two-column data frame, the function returnes a data frame with three columns: start position, end position and distance.
# And if the input is a bed-format data frame, there will be the chromosome column added.
#
# The row order of the returned data frame is as same as the input one.
#
# == example
# bed = generateRandomBed()
# bed = subset(bed, chr == "chr1")
# head(rainfallTransform(bed))
#
rainfallTransform = function(
	region, 
	mode = c("min", "max", "mean", "left", "right"),
	normalize_to_width = FALSE) {
	
	mode = match.arg(mode)[1]

	region = validate_data_frame(region)
	if(is.character(region[, 1]) || is.factor(region[, 1])) {
		region[, 1] = as.vector(region[, 1])
		region = region[1:3]
		region$dist = NA
		for(chr in unique(region[, 1])) {
			l = region[, 1] == chr
			df = rainfallTransform(region[l, 2:3, drop = FALSE], mode = mode)
			region$dist[l] = df$dist
		}
		return(region)
	}
	if(ncol(region) >= 3) {
		if(is.numeric(region[, 1])) {
			if(max(region[, 1]) < 100) {
				region = as.data.frame(region)
				region[[1]] = as.character(region[[1]])
				rainfallTransform(region, mode = mode)
			}
		}
	}
	
	region_order = order_region(region[1:2])
	region_bk = as.data.frame(region[1:2])
	region = as.data.frame(region[region_order, ])
	n = nrow(region)
	dist = numeric(n)
		
	if(n < 2) {
		region = region_bk
		region$dist = NA
		return(region)
	}
		
	dist[1] = region[2, 1] - region[1, 2]
	dist[n] = region[n, 1] - region[n-1, 2]
			
	if(n > 2) {
		d1 = region[3:n, 1] - region[2:(n-1), 2]
		d2 = region[2:(n-1), 1] - region[1:(n-2), 2]
		if(mode == "min") {
			dist[2:(n-1)] = pmin(d1, d2)
		} else if(mode == "max") {
			dist[2:(n-1)] = pmax(d1, d2)
		} else if(mode == "mean") {
			dist[2:(n-1)] = apply(cbind(d1, d2), 1, mean)
		} else if (mode == "left") {
			dist[2:(n - 1)] = d2
		} else if (mode == "right") {
			dist[2:(n - 1)] = d1
		}
	}
		
	dist = ifelse(dist < 0, 0, dist)

	if(mode == "left") {
		dist[1] = NA
	} else if(mode == "right") {
		dist[n] = NA
	}

	region = region_bk
	region$dist[region_order] = dist

	if(normalize_to_width) {
		region$dist = region$dist/(region[, 3] - region[, 2])
	}
	
	return(region)
}

# == title
# Genomic position transformation function
#
# == param
# -region Genomic positions at a single chromosome. It is a data frame with two
#     columns which are start position and end position.
# -... other arguments
#
# == details
# The default position transformation functions transforms position to be equally distributed
# along the chromosome. If users want to define their own transformation function, the requirement
# is that the returned value should be a data frame with two columns: transformed start position
# and transformed end position. The returned value should have same number of rows as the input one.
#
# For details why need to use position transformation, please refer to `circos.genomicPosTransformLines`.
posTransform.default = function(region, ...) {
	xlim = get.cell.meta.data("xlim")
	segment = seq(xlim[1], xlim[2], length.out = nrow(region) + 1)
	return(data.frame(start = segment[-length(segment)], end = segment[-1]))
}

# == title
# Genomic position transformation function specifically for text
#
# == param
# -region Genomic positions at a single chromosome. It is a data frame with two
#     columns which are start position and end position.
# -y positions of texts
# -labels text labels
# -cex  text size
# -font  text font style
# -sector.index sector index
# -track.index track index
# -padding padding of text
# -extend extend to allow labels to be put in an region which is wider than the current chromosome.
#    The value should be a proportion value and the length is either one or two.
# -... other arguments
#
# == details
# This position transformation function is designed specifically for text.
# Under the transformation, texts will be as close as possible to the original positions.
posTransform.text = function(
	region, 
	y, 
	labels, 
	cex = 1, 
	font = par("font"),
	sector.index = get.cell.meta.data("sector.index"),
	track.index = get.cell.meta.data("track.index"), 
	padding = 0, 
	extend = 0, 
	...) {

	if(length(y) == 1) y = rep(y, nrow(region))
	if(length(labels) == 1) labels = rep(labels, nrow(region))

	if(length(extend) == 1) extend = rep(extend, 2)
	if(length(extend) > 2) extend = extend[1:2]

	od = order(region[, 1] + region[, 2])
	od_back = NULL
	od_back[od] = seq_along(od)
	region = region[od, ,drop = FALSE]
	y = y[od]
	labels = labels[od]

	text_height = strheight(labels, cex = cex, font = font)*(1+padding)
	
	d = circlize( (region[[1]] + region[[2]])/2, y, sector.index = sector.index, track.index = track.index)
	alpha1 = d[, "theta"] + as.degree(atan(text_height/2/d[, "rou"]))
	alpha2 = d[, "theta"] - as.degree(atan(text_height/2/d[, "rou"]))
	x1 = reverse.circlize(alpha1, d[, "rou"], sector.index = sector.index, track.index = track.index)[, "x"]
	x2 = reverse.circlize(alpha2, d[, "rou"], sector.index = sector.index, track.index = track.index)[, "x"]
	
	xlim = get.cell.meta.data("cell.xlim", sector.index = sector.index, track.index = track.index)
	xrange = xlim[2] - xlim[1]
	xlim = c(xlim[1] - extend[1]*xrange, xlim[2] + extend[2]*xrange)

	x1_new = x1
	x2_new = x2
	l = x2 - x1 >= xlim[2] - xlim[1]; x1_new[l] = xlim[1]; x2_new[l] = xlim[2]
	l = x1 < xlim[1]; x1_new[l] = xlim[1]; x2_new[l] = x2[l] + xlim[1] - x1[l]
	l = x2 > xlim[2]; x1_new[l] = x1[l] - (x2[l] - xlim[2]); x2_new[l] = xlim[2]
	df = smartAlign(x1_new, x2_new, xlim = xlim)

	return(df[od_back, ,drop = FALSE])
}


# == title
# Add heatmaps for selected regions
#
# == param
# -bed A data frame in bed format, the matrix should be stored from the fourth column.
# -col Colors for the heatmaps. The value can be a matrix or a color mapping function generated by `colorRamp2`.
# -na_col Color for NA values.
# -numeric.column Column index for the numeric columns. The values can be integer index or character index.
#     By default it takes all numeric columns from the fourth column.
# -border Border of the heatmap grids.
# -border_lwd Line width for borders of heatmap grids.
# -border_lty Line style for borders of heatmap grids.
# -connection_height Height of the connection lines. If it is set to ``NULL``, no connection will be drawn.
#        Use `mm_h`/`cm_h`/`inches_h` to set a height in absolute unit.
# -line_col Color of the connection lines. The value can be a vector.
# -line_lwd Line width of the connection lines.
# -line_lty Line style of the connection lines.
# -heatmap_height Height of the heatmap track
# -side Side of the heatmaps. Is the heatmap facing inside or outside?
# -track.margin Bottom and top margins.
#
# == details
# The function visualizes heatmaps which correspond to a subset of regions in the genome.
# The correspondance between heatmaps and regions are identified by connection lines.
#
# The function actually creates two tracks, one track for the connection lines and one track
# for the heamtaps. The heatmaps always fill the whole track.
#
# == seealso
# https://jokergoo.github.io/circlize_book/book/high-level-genomic-functions.html#genomic-heatmap
#
# == example
# \donttest{
# circos.initializeWithIdeogram(plotType = c("labels", "axis"))
# bed = generateRandomBed(nr = 100, nc = 4)
# col_fun = colorRamp2(c(-1, 0, 1), c("green", "black", "red"))
# circos.genomicHeatmap(bed, col_fun, side = "inside", border = "white")
# circos.genomicHeatmap(bed, col_fun, side = "outside", 
#     line_col = as.numeric(factor(bed[[1]])))
# }
circos.genomicHeatmap = function(
	bed, 
	col, 
	na_col = "grey",
	numeric.column = NULL, 
	border = NA, 
	border_lwd = par("lwd"), 
	border_lty = par("lty"), 
	connection_height = mm_h(5),
	line_col = par("col"), 
	line_lwd = par("lwd"), 
	line_lty = par("lty"),
	heatmap_height = 0.15, 
	side = c("inside", "outside"), 
	track.margin = circos.par("track.margin")) {

	bed = validate_data_frame(bed)
	validate_region(bed, check_chr = TRUE)

	mat = bed[, -(1:3), drop = FALSE]
	if(is.null(numeric.column)) {
		numeric.column = which(apply(mat, 2, "is.numeric"))
		if(length(numeric.column) == 0) {
			stop_wrap("You don't have numeric columns in `bed`.")
		}
	} else {
		if(is.numeric(numeric.column)) {
			numeric.column = numeric.column - 3
		}
	}
	mat = mat[, numeric.column, drop = FALSE]

	mat = as.matrix(mat)
	bed = cbind(bed[, 1:3], mat)

	side = match.arg(side)
	if(missing(col)) {
		col = colorRamp2(seq(min(mat, na.rm = TRUE), max(mat, na.rm = TRUE), length.out = 3), c("blue", "#EEEEEE", "red"))
	}
	if(is.function(col)) {
		col = col(mat)
	}
	col[is.na(col)] = na_col
	if(length(border) == 1) {
		if(is.na(border)) {
			border = col
		}
	}
	if(length(border) == 1) {
		border = rep(border, length(col))
		dim(border) = dim(col)
	}
	if(side == "inside") {
		if(!is.null(connection_height)) {
			circos.genomicPosTransformLines(bed, posTransform = posTransform.default, 
			    horizontalLine = "top", track.height = connection_height,
			    track.margin = c(convert_height(1, "mm"), track.margin[2]), 
			    cell.padding = c(0, 0, 0, 0),
			    col = line_col, lwd = line_lwd, lty = line_lty)
		}
		circos.genomicTrackPlotRegion(bed, stack = TRUE, 
		    panel.fun = function(region, value, ...) {
		    	l = bed[, 1] == CELL_META$sector.index
		    	i = getI(...)
		        circos.genomicRect(region, value, col = col[l, i], 
		            border = border[l, i], lwd = border_lwd, lty = border_lty, 
		            posTransform = posTransform.default, ...)
			}, bg.border = NA, track.height = heatmap_height, track.margin = c(track.margin[1], 0),
			cell.padding = c(0, 0, 0, 0))
	} else {
		circos.genomicTrackPlotRegion(bed, stack = TRUE, 
		    panel.fun = function(region, value, ...) {
		    	l = bed[, 1] == CELL_META$sector.index
		    	i = getI(...)
		        circos.genomicRect(region, value, col = col[l, i], 
		            border = border[l, i], lwd = border_lwd, lty = border_lty, 
		            posTransform = posTransform.default, ...)
			}, bg.border = NA, track.height = heatmap_height, track.margin = c(0, track.margin[2]),
			cell.padding = c(0, 0, 0, 0))
		if(!is.null(connection_height)) {
			circos.genomicPosTransformLines(bed, posTransform = posTransform.default, 
			    direction = "outside", horizontalLine = "bottom", track.height = connection_height,
			    track.margin = c(track.margin[2], convert_height(1, "mm")), 
			    cell.padding = c(0, 0, 0, 0), 
			    col = line_col, lwd = line_lwd, lty = line_lty)
		}
	}
}

# == title
# Add labels to specified genomic regions
#
# == param
# -bed A data frame in bed format.
# -labels A vector of labels corresponding to rows in ``bed``.
# -labels.column If the label column is already in ``bed``, the index for this column in ``bed``.
# -facing fFacing of the labels. The value can only be ``"clockwise"`` or ``"reverse.clockwise"``.
# -niceFacing Whether automatically adjust the facing of the labels.
# -col Color for the labels.
# -cex Size of the labels.
# -font Font of the labels.
# -padding Padding of the labels, the value is the ratio to the height of the label.
# -connection_height Height of the connection track.
# -line_col Color for the connection lines.
# -line_lwd Line width for the connection lines.
# -line_lty Line type for the connectioin lines.
# -labels_height Height of the labels track.
# -side Side of the labels track, is it in the inside of the track where the regions are marked?
# -labels.side Same as ``side``. It will replace ``side`` in the future versions.
# -track.margin Bottom and top margins.
#
# == details
# The function adds labels for the specified regions. The positions of labels are arranged
# so that they are not overlapping to each other.
#
# This function creates two tracks, one for the connection lines and one for the labels.
#
# == seealso
# https://jokergoo.github.io/circlize_book/book/high-level-genomic-functions.html#labels
# 
# == example
# \donttest{
# circos.initializeWithIdeogram()
# bed = generateRandomBed(nr = 50, fun = function(k) sample(letters, k, replace = TRUE))
# bed[1, 4] = "aaaaa"
# circos.genomicLabels(bed, labels.column = 4, side = "inside")
# circos.clear()
#
# circos.initializeWithIdeogram(plotType = NULL)
# circos.genomicLabels(bed, labels.column = 4, side = "outside",
#     col = as.numeric(factor(bed[[1]])), line_col = as.numeric(factor(bed[[1]])))
# circos.genomicIdeogram()
# circos.clear()
# }
circos.genomicLabels = function(
	bed, 
	labels = NULL, 
	labels.column = NULL,
	facing = "clockwise", 
	niceFacing = TRUE,
	col = par("col"), 
	cex = 0.8, 
	font = par("font"), 
	padding = 0.4,
	connection_height = mm_h(5), 
	line_col = par("col"), 
	line_lwd = par("lwd"), 
	line_lty = par("lty"),
	labels_height = min(c(cm_h(1.5), max(strwidth(labels, cex = cex, font = font)))),
	side = c("inside", "outside"), 
	labels.side = side,
	track.margin = circos.par("track.margin")) {

	bed = validate_data_frame(bed)
	validate_region(bed, check_chr = TRUE)
	
	if(is.null(labels)){
		labels = bed[[labels.column]]
	}
	bed[[4]] = as.vector(labels)
	bed[[1]] = factor(as.vector(bed[[1]]), levels = get.all.sector.index())

	od = order(bed[[1]], bed[[2]])
	bed = bed[od, , drop = FALSE]
	bed[[1]] = as.vector(bed[[1]])

	# order `bed`

	if(length(col) == 1) col = rep(col, nrow(bed))
	if(length(cex) == 1) cex = rep(cex, nrow(bed))
	if(length(font) == 1) font = rep(font, nrow(bed))
	if(length(line_col) == 1) line_col = rep(line_col, nrow(bed))
	if(length(line_lwd) == 1) line_lwd = rep(line_lwd, nrow(bed))
	if(length(line_lty) == 1) line_lty = rep(line_lty, nrow(bed))

	col = col[od]
	cex = cex[od]
	font = font[od]
	line_col = line_col[od]
	line_lwd = line_lwd[od]
	line_lty = line_lty[od]

	if(!circos.par$xaxis.clock.wise) {
		all_chr_vec = as.character(bed[, 1])
		bed[, 2] = .CIRCOS.ENV$.SECTOR.DATA[all_chr_vec, "max.value"] - bed[, 2] + .CIRCOS.ENV$.SECTOR.DATA[all_chr_vec, "min.value"]
		bed[, 3] = .CIRCOS.ENV$.SECTOR.DATA[all_chr_vec, "max.value"] - bed[, 3] + .CIRCOS.ENV$.SECTOR.DATA[all_chr_vec, "min.value"]
		bed[, 2:3] = bed[, 3:2]
		circos.par(xaxis.clock.wise = TRUE)
		on.exit(circos.par(xaxis.clock.wise = FALSE))
	}

	chr = get.all.sector.index()[1]
	sector_data = get.sector.data(chr)
	
	## find the largest gap
	all_chr = unique(bed[, 1])
	rho = NULL
	for(cr in all_chr) {
		sub_bed = bed[bed[, 1] == cr, ]
		rho = c(rho, circlize(sub_bed[, 2], y = rep(1, nrow(sub_bed)), sector.index = cr)[, 1])
	}
	if(length(rho) == 0) {
		anchor = ((sector_data["start.degree"] + sector_data["end.degree"])/2 + 180) %% 360
	} else if(length(rho) == 1) {
		anchor = (rho + 180) %% 360
	} else {
		rho = sort(rho)
		rho = c(rho, rho[1] + 360)
		i = which.max(diff(rho))
		anchor = ((rho[i] + rho[i+1])/2) %% 360
	}

	# map all other chromosomes to the first chromosome
	chr_width = sector_data["start.degree"] - sector_data["end.degree"]
	# extend = (360 - chr_width)/chr_width
	# extend = c(0, extend)
	extend = numeric(2)
	s1 = sector_data["start.degree"] %% 360
	s2 = sector_data["end.degree"] %% 360
	# if the anchor in inside the first sector
	if(s1 < s2) { # the first sector go across theta = 0
		s1 = s1 + 360
	} 

	if(anchor >= s2 && anchor <= s1) { # anchor inside sector
		if(s1 - s2 > 180) {
			extend[1] = (abs(s1 - anchor) %% 360)/chr_width
			extend[2] = -(abs(s2 - anchor) %% 360)/chr_width
		} else {
			extend = (360 - chr_width)/chr_width
			extend = c(0, extend)
		}
	} else {
		extend[1] = ((anchor - s1) %% 360)/chr_width  # goes reverse clockwise
		extend[2] = ((s2 - anchor) %% 360)/chr_width  # goes clockwise
	}
	extend = abs(extend)

	if(0) segments(0, 0, cos(anchor/180*pi), sin(anchor/180*pi))

	# start.degree is always larger than end.degree
	new_chr_range = c(sector_data["start.degree"] + chr_width*extend[1], sector_data["end.degree"] - chr_width*extend[2])

	all_chr = unique(bed[, 1])
	bed2 = NULL
	for(cr in all_chr) {
		sub_bed = bed[bed[, 1] == cr, ]
		if(cr != chr) {
			dfx1 = circlize(sub_bed[, 2], y = rep(1, nrow(sub_bed)), sector.index = cr)
			dfx2 = circlize(sub_bed[, 3], y = rep(1, nrow(sub_bed)), sector.index = cr)
			degree_diff = dfx2[, 1] - dfx1[, 1]
			
			l = dfx1[, 1] > new_chr_range[1] | dfx1[, 1] < new_chr_range[2]
			if(any(l)) dfx1[l, 1] = (dfx1[l, 1] - new_chr_range[2]) %% 360 + new_chr_range[2]
			x1 = reverse.circlize(dfx1, sector.index = chr)[, 1]
			
			dfx2[, 1] = dfx1[, 1] + degree_diff
			x2 = reverse.circlize(dfx2, sector.index = chr)[, 1]
			sub_bed[, 2:3] = data.frame(start = x1, end = x2)
		}
		bed2 = rbind(bed2, sub_bed)
	}
	bed2[, 1] = chr

	if(!facing %in% c("clockwise", "reverse.clockwise")) {
		stop_wrap("facing can only be 'clockwise' or `reverse.clockwise`.")
	}

	op = circos.par("points.overflow.warning")
	circos.par("points.overflow.warning" = FALSE)
	labels.side = side = match.arg(side)[1]
	if(labels.side == "inside") {
		# an empty track
		circos.genomicTrackPlotRegion(bed2, ylim = c(0, 1), 
			track.margin = c(convert_height(0.5, "mm"), track.margin[2]), 
		    cell.padding = c(0, 0, 0, 0),
		    track.height = connection_height, bg.border = NA)
		i_track = get.cell.meta.data("track.index")

		# add labels
		circos.genomicTrackPlotRegion(bed2, ylim = c(0, 1), panel.fun = function(region, value, ...) {
			l = bed2[[1]] == CELL_META$sector.index
			circos.genomicText(region, value, y = 1, labels.column = 1, facing = facing, adj = c((facing == "clockwise") + 0, 0.5),
				posTransform = posTransform.text, col = col[l], cex = cex[l], font = font[l], niceFacing = niceFacing,
				padding = padding, extend = extend)
		}, track.height = labels_height, bg.border = NA, track.margin = c(track.margin[1], 0),
		cell.padding = c(0, 0, 0, 0))

		circos.genomicPosTransformLines(bed2, 
			posTransform = function(region, value) {
				l = bed2[[1]] == get.cell.meta.data("sector.index", track.index = i_track + 1)
				posTransform.text(region, y = 1, labels = value[[1]], cex = cex[l], font = font[l], 
					track.index = i_track + 1, padding = padding, extend = extend)
			},
			direction = "inside", horizontalLine = "top", track.index = i_track,
			cell.padding = c(0, 0, 0, 0),
			col = line_col, lwd = line_lwd, lty = line_lty
		)
	} else {
		circos.genomicTrackPlotRegion(bed2, ylim = c(0, 1), panel.fun = function(region, value, ...) {
			l = bed2[[1]] == CELL_META$sector.index
			circos.genomicText(region, value, y = 0, labels.column = 1, facing = facing, adj = c((facing == "reverse.clockwise") + 0, 0.5),
				posTransform = posTransform.text, col = col[l], cex = cex[l], font = font[l], niceFacing = niceFacing,
				padding = padding, extend = extend)
		}, track.height = labels_height, bg.border = NA, track.margin = c(0, track.margin[2]),
		cell.padding = c(0, 0, 0, 0))
		i_track = get.cell.meta.data("track.index")

		circos.genomicPosTransformLines(bed2, 
			posTransform = function(region, value) {
				l = bed2[[1]] == get.cell.meta.data("sector.index", track.index = i_track)
				posTransform.text(region, y = 0, labels = value[[1]], cex = cex[l], font = font[l], 
					track.index = i_track, padding = padding, extend = extend)
			},
			direction = "outside", horizontalLine = "bottom",
			col = line_col, lwd = line_lwd, lty = line_lty, track.height = connection_height,
			track.margin = c(track.margin[1], convert_height(0.5, "mm")), 
		    cell.padding = c(0, 0, 0, 0)
		)
	}
	circos.par("points.overflow.warning" = op)
}

# == title
# Adjust positions of text
#
# == param
# -x1 Position which corresponds to the top of the text.
# -x2 Position which corresponds to the bottom of the text.
# -xlim Ranges on x-axis.
#
# == details
# used internally
smartAlign = function(x1, x2, xlim) {

	ncluster.before = -1
	ncluster = length(x1)
	while(ncluster.before != ncluster) {
		ncluster.before = ncluster
		cluster = rep(0, length(x1))
		i_cluster = 1
		cluster[1] = i_cluster
		for(i in seq_along(x1)[-1]) {
			# overlap with previous one
			if(x1[i] <= x2[i-1]) {
				cluster[i] = i_cluster
			} else {
				i_cluster = i_cluster + 1
				cluster[i] = i_cluster
			}
		}
		ncluster = length(unique(cluster))
		
		if(ncluster.before == ncluster) break
		
		# tile intervals in each cluster and re-assign x1 and x2
		new_x1 = numeric(length(x1))
		new_x2 = numeric(length(x2))
		for(i_cluster in unique(cluster)) {
			index = which(cluster == i_cluster)
			len = x2[index] - x1[index]
			total_len = sum(len)
			mid = (min(x1[index]) + max(x2[index]))/2
			if(total_len > xlim[2] - xlim[1]) {
				tp = c(0, cumsum(len)) + (xlim[1] + xlim[2])/2 - total_len/2
			} else if(mid - total_len/2 < xlim[1]) {
				tp = c(0, cumsum(len)) + xlim[1]
			} else if(mid + total_len/2 > xlim[2]) {
				tp = xlim[2] - total_len + c(0, cumsum(len))
			} else {
				tp = c(0, cumsum(len)) + mid - total_len/2
			}
			new_x1[index] = tp[-length(tp)]
			new_x2[index] = tp[-1]
		}
		
		x1 = new_x1
		x2 = new_x2
	}
	
	return(data.frame(start = x1, end = x2))
}
jokergoo/circlize documentation built on Nov. 17, 2023, 11:32 a.m.