R/utils.R

Defines functions .makemsg .subsetDataForAdjacencyMatrix .subsetColumns .processSubsetCols .RowDropsBySequenceContent .RowDropsBySequenceLength .convertColRef aggregateIdenticalClones getNeighborhood filterInputData .saveNetworkObjects .saveNetworkRDS .saveNetworkRDA .saveDataGeneric .createDirectories .createOutputDir saveNetworkPlots saveNetwork .loadFile.i .loadDataFromFile combineSamples loadDataFromFileList

Documented in aggregateIdenticalClones combineSamples filterInputData getNeighborhood loadDataFromFileList saveNetwork saveNetworkPlots

# NAIR: Network Analysis of Immune Repertoire
# Copyright (C) 2023 Li Zhang
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <https://www.gnu.org/licenses/>.

# File Loading ------------------------------------------------------------
loadDataFromFileList <- function(
    file_list,
    input_type,
    data_symbols = NULL,
    header, sep, read.args
)
{
  if (missing(header)) {
    header <-  switch(input_type, "txt" = FALSE, "table" = FALSE, TRUE)
  }
  if (missing(sep)) {
    sep <- switch(input_type, "csv" = ",", "csv2" = ";", "tsv" = "\t", "")
  }
  if (missing(read.args)) { read.args <- NULL }
  .checkargs.InputFiles(
    file_list, input_type, data_symbols, header, sep, read.args
  )
  if (input_type %in% c("csv", "csv2", "tsv", "txt", "table")) {
    read.args <- .checkReadArgs(read.args, header, sep)
  }
  if (input_type == "rda" && length(file_list) > length(data_symbols)) {
    data_symbols <- rep(data_symbols, length.out = length(file_list))
  }
  data_list <- sapply(1:length(file_list), .loadFile.i, files = file_list,
                      type = input_type, symbols = data_symbols, head = header,
                      sep = sep, args = read.args, simplify = FALSE
  )
  for (i in 1:length(file_list)) {
    data_list[[i]]$rowid <- paste0("file", i, ".", rownames(data_list[[i]]))
  }
  # data_list <- vector(mode = "list", length = length(file_list))
  # names(data_list) <- paste0("file", 1:length(file_list))
  # for (i in 1:length(file_list)) {
  #   data_list[[i]] <- .loadDataFromFile(
  #     file_list[[i]], input_type, data_symbols[[i]], header, sep, read.args
  #   )
  # }
  data <- do.call(rbind, data_list)
  rownames(data) <- data$rowid
  data$rowid <- NULL
  data
}

combineSamples <- function(
    file_list,
    input_type,
    data_symbols = NULL,
    header, sep, read.args,
    seq_col = NULL,
    min_seq_length = NULL,
    drop_matches = NULL,
    subset_cols = NULL,
    sample_ids = NULL,
    subject_ids = NULL,
    group_ids = NULL,
    verbose = FALSE
) {
  if (missing(header)) {
    header <-  switch(input_type, "txt" = FALSE, "table" = FALSE, TRUE)
  }
  if (missing(sep)) {
    sep <- switch(input_type, "csv" = ",", "csv2" = ";", "tsv" = "\t", "")
  }
  if (missing(read.args)) { read.args <- NULL }
  .checkargs.InputFiles(
    file_list, input_type, data_symbols, header, sep, read.args
  )
  if (input_type %in% c("csv", "csv2", "tsv", "txt", "table")) {
    read.args <- .checkReadArgs(read.args, header, sep)
  }
  .orNull(.MUST.isCharOrIntegerVector, seq_col)
  .orNull(.MUST.hasLength, seq_col, len = c(1, 2))
  if (!is.null(seq_col)) {
    min_seq_length <- .check(min_seq_length, .isNonneg, NULL, ornull = TRUE)
    drop_matches <- .check(drop_matches, .isString, NULL, ornull = TRUE)
  }
  subset_cols <- .check(subset_cols, .isCharOrNumericVector, NULL,
                        ornull = TRUE
  )
  sample_ids <- .checkIDs(sample_ids, length(file_list), ornull = TRUE)
  subject_ids <- .checkIDs(subject_ids, length(file_list), ornull = TRUE,
                           allow_dupes = TRUE
  )
  group_ids <- .checkIDs(group_ids, length(file_list), ornull = TRUE,
                         allow_dupes = TRUE
  )
  if (!is.null(sample_ids)) {
    sample_ids <- as.vector(sample_ids, mode = "character")
  }
  if (!is.null(subject_ids)) {
    subject_ids <- as.vector(subject_ids, mode = "character")
  }
  if (!is.null(group_ids)) {
    group_ids <- as.vector(group_ids, mode = "character")
  }
  if (input_type == "rda" && length(file_list) > length(data_symbols)) {
    data_symbols <- rep(data_symbols, length.out = length(file_list))
  }
  msg <- .makemsg(verbose)
  # temp_symbols <- paste0("sample", 1:length(file_list))
  data_list <- vector(mode = "list", length = length(file_list))
  for (i in 1:length(file_list)) {
    msg("Loading sample ", i, "...", newline = FALSE)
    data_list[[i]] <- .loadDataFromFile(
      file_list[[i]], input_type, data_symbols[[i]], header, sep, read.args
    )
    if (i == 1) {
      seq_col <- .convertColRef(seq_col, data_list[[i]])
      subset_cols <- .convertColRef(subset_cols, data_list[[i]])
    }
    if (!is.null(seq_col)) {
      data_list[[i]] <- filterInputData(data_list[[i]], seq_col,
                                        min_seq_length, drop_matches,
                                        subset_cols, verbose = verbose
      )
    }
    if (!is.null(sample_ids)) {
      data_list[[i]]$SampleID <- sample_ids[[i]]
      data_list[[i]]$rowid <- paste0(sample_ids[[i]], ".",
                                     rownames(data_list[[i]])
      )
    } else {
      data_list[[i]]$rowid <- paste0("file", i, ".", rownames(data_list[[i]]))
    }
    if (!is.null(subject_ids)) { data_list[[i]]$SubjectID <- subject_ids[[i]] }
    if (!is.null(group_ids)) { data_list[[i]]$GroupID <- group_ids[[i]] }
    # assign(temp_symbols[[i]], tmp)
    # rm(tmp)
  }
  # data_list <- mget(temp_symbols)
  # rm(list = temp_symbols)
  data <- do.call(rbind, data_list)
  rownames(data) <- data$rowid
  data$rowid <- NULL
  data
}

.loadDataFromFile <- function(
    input_file,
    input_type,
    data_symbol,
    header, sep, read.args
) {
  if (input_type == "rds") {
    data <- readRDS(input_file)
  } else if (input_type == "rda") {
    load(input_file)
    assign(x = "data", value = get(data_symbol))
  } else {
    if (is.null(read.args)) {
      read.args <- list(header = header, sep = sep)
    }
    read.args$file <- input_file
    read_fun <- switch(input_type,
                       "csv" = utils::read.csv,
                       "csv2" = utils::read.csv2,
                       "tsv" = utils::read.delim,
                       utils::read.table
    )
    data <- do.call(read_fun, read.args)
  }

  data
}

.loadFile.i <- function(i, files, type, symbols, head, sep, args) {
  # Same as .loadDataFromFile, but designed for use with sapply()
  if (type == "rds") {
    data <- readRDS(files[[i]])
  } else if (type == "rda") {
    load(files[[i]])
    assign(x = "data", value = get(symbols[[i]]))
  } else {
    if (is.null(args)) {
      args <- list(header = head, sep = sep)
    }
    args$file <- files[[i]]
    read_fun <- switch(type,
                       "csv" = utils::read.csv,
                       "csv2" = utils::read.csv2,
                       "tsv" = utils::read.delim,
                       utils::read.table
    )
    data <- do.call(read_fun, args)
  }
  data
}

# File Saving -------------------------------------------------------------
saveNetwork <- function(
    net,
    output_dir,
    output_type = "rds",
    output_name = "MyRepSeqNetwork",
    pdf_width = 12,
    pdf_height = 10,
    verbose = FALSE,
    output_filename = deprecated()
) {
  if (lifecycle::is_present(output_filename)) {
    lifecycle::deprecate_soft(
      when = "1.0.1",
      what = "saveNetwork(output_filename)",
      with = "saveNetwork(output_name)"
    )
    output_name <- output_filename
  }
  .MUST.isBaseNetworkOutput(net)
  msg <- .makemsg(verbose)
  if (!.orNull(.isString, output_dir)) {
    warning(sQuote("output_dir"), " is not a character string. ",
            "Output will not be saved"
    )
    return(FALSE)
  }
  .createOutputDir(output_dir)
  if (is.null(output_dir)) {
    msg(sQuote("output_dir"), " is ", dQuote("NULL"),
        ". Output will not be saved."
    )
    return(FALSE)
  } else if (!isTRUE(dir.exists(output_dir))) {
    warning("directory ", dQuote(output_dir),
            " specified for ", sQuote("output_dir"),
            " does not exist and could not be created. Output will not be saved"
    )
    return(FALSE)
  }
  output_type <- .checkOutputType(output_type)
  output_name <- .checkOutputName(output_name, "MyRepSeqNetwork")
  pdf_width <- .check(pdf_width, .isPos, 12)
  pdf_height <- .check(pdf_width, .isPos, 10)
  if (output_type == "individual") {
    .saveNetworkObjects(net, output_dir, output_name, verbose)
  } else if (output_type == "rds") {
    .saveNetworkRDS(net, output_dir, output_name, verbose)
  } else {
    .saveNetworkRDA(net, output_dir, output_name, verbose)
  }
  if ("plots" %in% names(net)) {
    outfile_layout <- NULL
    if (output_type == "individual") {
      outfile_layout <- file.path(output_dir,
                                  paste0(output_name, "_GraphLayout.txt")
      )
    }
    saveNetworkPlots(
      net$plots, file.path(output_dir, paste0(output_name, ".pdf")),
      pdf_width, pdf_height, outfile_layout, verbose
    )
  }
  TRUE
}

saveNetworkPlots <- function(
    plotlist,
    outfile,
    pdf_width = 12,
    pdf_height = 10,
    outfile_layout = NULL,
    verbose = FALSE
) {
  .MUST.isPlotlist(plotlist)
  .MUST.isStringOrConnection(outfile)
  # if (!.isValidFilename(basename(outfile))) {
  #   warning(dQuote(outfile), " may be an unsafe file name")
  # }
  outfile_layout <- .checkOutfileLayout(outfile_layout, plotlist)
  outfile_layout <- .check(outfile_layout, .isStringOrConnection, NULL,
                           ornull = TRUE
  )
  # if (!is.null(outfile_layout) && !.isValidFilename(basename(outfile_layout))) {
  #   warning(dQuote(outfile_layout), " may be an unsafe file name")
  # }
  pdf_width <- .check(pdf_width, .isPos, 12)
  pdf_height <- .check(pdf_width, .isPos, 10)
  msg <- .makemsg(verbose)
  grDevices::pdf(file = outfile, width = pdf_width, height = pdf_height)
  for (j in 1:length(plotlist)) {
    if (inherits(plotlist[[j]], "gg")) {
      print(plotlist[[j]])
    }
  }
  grDevices::dev.off()
  msg("Network graph plots printed to pdf file:\n  ", outfile)
  if (!is.null(outfile_layout) && "graph_layout" %in% names(plotlist)) {
    write(plotlist[[which(names(plotlist) == "graph_layout")]],
          file = outfile_layout,
          ncolumns = 2
    )
    msg("Graph layout for plots saved to file:\n  ", outfile_layout)
  }
  invisible(TRUE)
}

.createOutputDir <- function(dirname) {
  if (!is.null(dirname) && !isTRUE(dir.exists(dirname))) {
    dir.create(dirname, showWarnings = FALSE, recursive = TRUE)
  }
}

.createDirectories <- function(dirs) {
  for (i in 1:length(dirs)) {
    dir.create(dirs[[i]], showWarnings = FALSE, recursive = TRUE)
  }
}

.saveDataGeneric <- function(data, output_dir, output_name, output_type)
{
  if (output_type == "rds") {
    saveRDS(object = data,
            file = file.path(output_dir, paste0(output_name, ".rds"))
    )
  } else if (output_type == "csv") {
    # data <- apply(data, MARGIN = 2, FUN = as.character)
    utils::write.csv(data,
                     file = file.path(output_dir, paste0(output_name, ".csv"))
    )
  } else if (output_type == "csv2") {
    # data <- apply(data, MARGIN = 2, FUN = as.character)
    utils::write.csv2(data,
                      file = file.path(output_dir, paste0(output_name, ".csv"))
    )
  } else if (output_type %in% c("tsv")) {
    # data <- apply(data, MARGIN = 2, FUN = as.character)
    utils::write.table(data, row.names = TRUE, sep = "\t",
                       file = file.path(output_dir, paste0(output_name, ".tsv"))
    )
  } else if (output_type %in% c("txt", "table")) {
    # data <- apply(data, MARGIN = 2, FUN = as.character)
    utils::write.table(data, row.names = TRUE,
                       file = file.path(output_dir, paste0(output_name, ".txt"))
    )
  } else {
    save(data, file = file.path(output_dir, paste0(output_name, ".rda")))
  }
}

.saveNetworkRDA <- function(net, output_dir, output_filename,
                            verbose = FALSE
) {
  msg <- .makemsg(verbose)
  outfile <- file.path(output_dir, paste0(output_filename, ".rda"))
  save(net, file = outfile)
  msg("List 'net' saved to file:\n  ", outfile)
}

.saveNetworkRDS <- function(net, output_dir, output_filename,
                            verbose = FALSE
) {
  msg <- .makemsg(verbose)
  outfile <- file.path(output_dir, paste0(output_filename, ".rds"))
  saveRDS(net, file = outfile)
  msg("List of network objects saved to file:\n  ", outfile)
}

.saveNetworkObjects <- function(net, output_dir, output_filename,
                                verbose = FALSE
) {
  msg <- .makemsg(verbose)
  if ("details" %in% names(net) && isTRUE(inherits(net$details, "list"))) {
    details_outfile <- file.path(
      output_dir, paste0(output_filename, "_Details.txt")
    )
    utils::write.table(net$details, details_outfile, row.names = TRUE,
                       col.names = FALSE, quote = FALSE, sep = "\n\t"
    )
    saveRDS(net$details, file = details_outfile)
    msg("Network details saved to data file:\n  ", details_outfile)
  }
  node_file <- file.path(
    output_dir, paste0(output_filename, "_NodeMetadata.csv")
  )
  utils::write.csv(net$node_data, file = node_file)
  msg("Node metadata saved to file:\n  ", node_file)

  if ("cluster_data" %in% names(net)) {
    cluster_file <- file.path(
      output_dir, paste0(output_filename, "_ClusterMetadata.csv")
    )
    utils::write.csv(net$cluster_data, file = cluster_file, row.names = FALSE)
    msg("Cluster metadata saved to file:\n  ", cluster_file)
  }

  igraph_outfile <- file.path(
    output_dir, paste0(output_filename, "_EdgeList.txt")
  )
  igraph::write_graph(net$igraph, file = igraph_outfile, format = "edgelist")
  msg("Network igraph saved in edgelist format to file:\n  ", igraph_outfile)

  if (inherits(net$adjacency_matrix, "matrix")) {
    matrix_outfile <- file.path(
      output_dir, paste0(output_filename, "_AdjacencyMatrix.csv")
    )
    utils::write.csv(net$adjacency_matrix, matrix_outfile, row.names = FALSE)
    msg("Adjacency matrix saved to file:\n  ", matrix_outfile)
  } else if (inherits(net$adjacency_matrix, "sparseMatrix")) {
    matrix_outfile <- file.path(
      output_dir, paste0(output_filename, "_AdjacencyMatrix.mtx")
    )
    Matrix::writeMM(net$adjacency_matrix, matrix_outfile)
    msg("Adjacency matrix saved to file:\n  ", matrix_outfile)
    if ("adj_mat_a" %in% names(net)) {
      matrix_outfile <- file.path(
        output_dir, paste0(output_filename, "_AdjacencyMatrix_ChainA.mtx")
      )
      Matrix::writeMM(net$adj_mat_a, matrix_outfile)
      msg("Adjacency matrix for first chain saved to file:\n  ", matrix_outfile)
      matrix_outfile <- file.path(
        output_dir, paste0(output_filename, "_AdjacencyMatrix_ChainB.mtx")
      )
      Matrix::writeMM(net$adj_mat_b, matrix_outfile)
      msg(
        "Adjacency matrix for second chain saved to file:\n  ", matrix_outfile
      )
    }
  }

  if ("plots" %in% names(net)) {
    plots_outfile <- file.path(output_dir,
                               paste0(output_filename, "_Plots.rda")
    )
    plots <- net$plots
    save(plots, file = plots_outfile)
    msg("List of network graph plots named 'plots' saved to data file:\n  ",
        plots_outfile
    )
  }
  list_outfile <- file.path(output_dir, paste0(output_filename, ".rda"))
  save(net, file = list_outfile)
  msg("List 'net' saved to file:\n  ", list_outfile)

}


# Filtering and Subsetting ------------------------------------------------
filterInputData <- function(
    data,
    seq_col,
    min_seq_length = NULL,
    drop_matches = NULL,
    subset_cols = NULL,
    count_col = NULL,
    verbose = FALSE
) {
  # if (lifecycle::is_present(count_col)) {
  #   lifecycle::deprecate_soft(
  #     when = "1.0.1",
  #     what = "filterInputData(count_col)",
  #   )
  # }
  data_name <- deparse(substitute(data))
  data <- as.data.frame(data)
  .MUST.isDataFrame(data, data_name)
  .MUST.isSeqColrefs(seq_col, data, deparse(substitute(seq_col)), data_name)
  min_seq_length <- .check(min_seq_length, .isNonneg, NULL, ornull = TRUE)
  drop_matches <- .check(drop_matches, .isString, NULL, ornull = TRUE)
  subset_cols <- .checkDataColrefs(subset_cols, data, NULL)
  count_col <- .checkCountCol(count_col, data, NULL)
  msg <- .makemsg(verbose)
  msg("Input data contains ", nrow(data), " rows.")
  for (i in 1:length(seq_col)) {
    if (!is.character(data[[seq_col[[i]]]])) {
      data[[seq_col[[i]]]] <- as.character(data[[seq_col[[i]]]])
    }
    NA_indices <- is.na(data[[seq_col[[i]]]])
    if (sum(NA_indices) > 0) {
      if (length(seq_col == 2)) {
        msg("dropping ", sum(NA_indices),
            " rows containing NA/NaN values in sequence column ", i
        )
      } else {
        msg("dropping ", sum(NA_indices),
            " rows containing NA/NaN values in sequence column",
        )
      }
      data <- data[!NA_indices, ]
    }
  }
  if (!is.null(min_seq_length)) {
    msg("Removing sequences with length fewer than ",
        min_seq_length, " characters...", newline = FALSE
    )
    drop_rows <- .RowDropsBySequenceLength(data, seq_col, min_seq_length)
    if (sum(drop_rows) > 0) { data <- data[!drop_rows, , drop = FALSE] }
    msg(" Done. ", nrow(data), " rows remaining.")
  }
  if (!is.null(drop_matches)) {
    msg("Removing sequences containing matches to ",
        dQuote(drop_matches), "...", newline = FALSE
    )
    drop_rows <- .RowDropsBySequenceContent(data, seq_col, drop_matches)
    if (sum(drop_rows) > 0) { data <- data[!drop_rows, , drop = FALSE] }
    msg(" Done. ", nrow(data), " rows remaining.")
  }
  if (!is.null(subset_cols)) {
    data <- .subsetColumns(data, c(seq_col, subset_cols))
  }
  if (!is.null(count_col)) {
    # if (!is.numeric(data[[count_col]])) {
    #   data[[count_col]] <- as.numeric(data[[count_col]])
    # }
    NA_indices <- is.na(data[[count_col]])
    if (sum(NA_indices) > 0) {
      warning("dropping ", sum(NA_indices),
              " rows containing NA/NaN values in count column"
      )
      data <- data[!NA_indices, ]
    }
  }
  data
}

getNeighborhood <- function(
    data,
    seq_col,
    target_seq,
    dist_type = "hamming",
    max_dist = 1
) {
  data_name <- deparse(substitute(data))
  data <- as.data.frame(data)
  .MUST.isDataFrame(data, data_name)
  .MUST.isSeqColref(seq_col, data, deparse(substitute(seq_col)), data_name)
  .MUST.isString(target_seq)
  dist_type <- .checkDistType(dist_type, "hamming")
  max_dist <- .check(max_dist, .isNonneg, 1)
  if (!target_seq %in% data[[seq_col]]) {
    return(NULL)
  }
  dist_fun <- ifelse(dist_type == "levenshtein",
                     yes = levDistBounded, no = hamDistBounded
  )
  dists_to_targetseq <- sapply(
    X = data[[seq_col]],
    FUN = dist_fun, b = target_seq, k = max_dist
  )
  out <- data[dists_to_targetseq != -1, , drop = FALSE]
  out
}

aggregateIdenticalClones <- function(
    data,
    clone_col,
    count_col,
    freq_col,
    grouping_cols = NULL,
    verbose = FALSE
) {
  data_name <- deparse(substitute(data))
  data <- as.data.frame(data)
  .MUST.isDataFrame(data, data_name)
  .MUST.isSeqColref(clone_col, data, deparse(substitute(clone_col)), data_name)
  .MUST.isCountColref(count_col, data,
                      deparse(substitute(count_col)), data_name
  )
  .MUST.isCountColref(freq_col, data, deparse(substitute(freq_col)), data_name)
  grouping_cols <- .checkDataColrefs(grouping_cols, data, ornull = TRUE)
  msg <- .makemsg(verbose)
  clone_col <- .convertColRef(clone_col, data)
  count_col <- .convertColRef(count_col, data)
  freq_col <- .convertColRef(freq_col, data)
  grouping_variables <- list(data[[clone_col]])
  names(grouping_variables) <- clone_col
  if (!is.null(grouping_cols)) {
    if (is.numeric(grouping_cols)) {
      grouping_cols <- names(data)[grouping_cols]
    }
    for (i in 1:length(grouping_cols)) {
      grouping_variables$newvar <- data[[grouping_cols[[i]]]]
      names(grouping_variables)[[length(grouping_variables)]] <-
        grouping_cols[[i]]
    }
  }
  msg("Aggregating reads (rows) by unique clone sequence...", newline = FALSE)
  data_to_aggregate <- list("AggregatedCloneCount" = data[ , c(count_col)],
                            "AggregatedCloneFrequency" = data[ , c(freq_col)]
  )
  agg_counts <- stats::aggregate(data_to_aggregate,
                                 by = grouping_variables, FUN = sum)
  groups <- as.data.frame(grouping_variables)
  num_reads <- dplyr::summarize(dplyr::group_by_all(groups),
                                UniqueCloneCount = length({{ clone_col }})
  )
  names(num_reads)[[1]] <- clone_col
  out <- merge(agg_counts, num_reads, by = c(clone_col, grouping_cols))
  msg(" Done. ", nrow(out), " unique clone sequences found.")
  out
}

.convertColRef <- function(colrefs, data) {
  if (is.numeric(colrefs)) { colrefs <- names(data)[colrefs] }
  colrefs
}

.RowDropsBySequenceLength <- function(data, seq_col, min_length = 3) {
  drop_rows <- rep(FALSE, nrow(data))
  for (i in 1:length(seq_col)) {
    drop_rows <- drop_rows | (nchar(data[[seq_col[[i]]]]) < min_length)
  }
  drop_rows
}

.RowDropsBySequenceContent <- function(data, seq_col, drop_matches) {
  drop_rows <- rep(FALSE, nrow(data))
  for (i in 1:length(seq_col)) {
    drop_rows <- drop_rows | grepl(drop_matches, data[[seq_col[[i]]]])
  }
  drop_rows
}

.processSubsetCols <- function(subset_cols, other_cols) {
  if (is.null(subset_cols)) {
    return(NULL)
  }
  c(subset_cols, other_cols)
}

.subsetColumns <- function(data, cols_to_keep) {
  cols_to_keep <- intersect(unique(cols_to_keep), names(data))
  if (length(cols_to_keep) == 0) {
    out <- data
  } else {
    out <- data[ , cols_to_keep, drop = FALSE]
  }
  out
}

.subsetDataForAdjacencyMatrix <- function(data, adjacency_matrix) {
  # return subset of data corresponding to adjacency matrix
  return(data[as.numeric(dimnames(adjacency_matrix)[[1]]), , drop = FALSE])
}



# Message and Console Output ----------------------------------------------

.makemsg <- function(verbose) {
  verbose <- .checkTF(verbose, FALSE)
  if (verbose) {
    msg <- function(..., newline = TRUE) { message(..., appendLF = newline) }
  } else {
    msg <- function(..., newline = TRUE) { invisible(NULL) }
  }
  msg
}
mlizhangx/Network-Analysis-for-Repertoire-Sequencing- documentation built on April 7, 2024, 12:02 p.m.