mlr_learners_classif.C50 | R Documentation |
Decision Tree Algorithm.
Calls C50::C5.0.formula()
from C50.
This Learner can be instantiated via lrn():
lrn("classif.C50")
Task type: “classif”
Predict Types: “response”, “prob”
Feature Types: “numeric”, “factor”, “ordered”
Required Packages: mlr3, mlr3extralearners, C50
Id | Type | Default | Levels | Range |
trials | integer | 1 | [1, \infty) |
|
rules | logical | FALSE | TRUE, FALSE | - |
costs | untyped | NULL | - | |
subset | logical | TRUE | TRUE, FALSE | - |
bands | integer | - | [0, 1000] |
|
winnow | logical | FALSE | TRUE, FALSE | - |
noGlobalPruning | logical | FALSE | TRUE, FALSE | - |
CF | numeric | 0.25 | [0, 1] |
|
minCases | integer | 2 | [0, \infty) |
|
fuzzyThreshold | logical | FALSE | TRUE, FALSE | - |
sample | numeric | 0 | [0, 0.999] |
|
seed | integer | - | (-\infty, \infty) |
|
earlyStopping | logical | TRUE | TRUE, FALSE | - |
label | untyped | "outcome" | - | |
na.action | untyped | "stats::na.pass" | - | |
mlr3::Learner
-> mlr3::LearnerClassif
-> LearnerClassifC50
new()
Creates a new instance of this R6 class.
LearnerClassifC50$new()
clone()
The objects of this class are cloneable with this method.
LearnerClassifC50$clone(deep = FALSE)
deep
Whether to make a deep clone.
henrifnk
Quinlan, Ross J (2014). C4. 5: programs for machine learning. Elsevier.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.