mlr_learners_classif.C50: Classification C5.0 Learner

mlr_learners_classif.C50R Documentation

Classification C5.0 Learner

Description

Decision Tree Algorithm. Calls C50::C5.0.formula() from C50.

Dictionary

This Learner can be instantiated via lrn():

lrn("classif.C50")

Meta Information

  • Task type: “classif”

  • Predict Types: “response”, “prob”

  • Feature Types: “numeric”, “factor”, “ordered”

  • Required Packages: mlr3, mlr3extralearners, C50

Parameters

Id Type Default Levels Range
trials integer 1 [1, \infty)
rules logical FALSE TRUE, FALSE -
costs untyped NULL -
subset logical TRUE TRUE, FALSE -
bands integer - [0, 1000]
winnow logical FALSE TRUE, FALSE -
noGlobalPruning logical FALSE TRUE, FALSE -
CF numeric 0.25 [0, 1]
minCases integer 2 [0, \infty)
fuzzyThreshold logical FALSE TRUE, FALSE -
sample numeric 0 [0, 0.999]
seed integer - (-\infty, \infty)
earlyStopping logical TRUE TRUE, FALSE -
label untyped "outcome" -
na.action untyped "stats::na.pass" -

Super classes

mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifC50

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerClassifC50$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerClassifC50$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

henrifnk

References

Quinlan, Ross J (2014). C4. 5: programs for machine learning. Elsevier.


mlr-org/mlr3extralearners documentation built on Dec. 21, 2024, 2:21 p.m.