mlr_learners_classif.sgd: Classification Stochastic Gradient Descent Learner

mlr_learners_classif.sgdR Documentation

Classification Stochastic Gradient Descent Learner

Description

Stochastic Gradient Descent for learning various linear models. Calls RWeka::make_Weka_classifier() from RWeka.

Initial parameter values

  • F:

    • Has only 2 out of 5 original loss functions: 0 = hinge loss (SVM) and 1 = log loss (logistic regression) with 0 (hinge loss) still being the default

    • Reason for change: this learner should only contain loss functions appropriate for classification tasks

Custom mlr3 parameters

  • output_debug_info:

    • original id: output-debug-info

  • do_not_check_capabilities:

    • original id: do-not-check-capabilities

  • num_decimal_places:

    • original id: num-decimal-places

  • batch_size:

    • original id: batch-size

  • Reason for change: This learner contains changed ids of the following control arguments since their ids contain irregular pattern

Dictionary

This Learner can be instantiated via lrn():

lrn("classif.sgd")

Meta Information

  • Task type: “classif”

  • Predict Types: “response”, “prob”

  • Feature Types: “logical”, “integer”, “numeric”, “factor”, “ordered”

  • Required Packages: mlr3, RWeka

Parameters

Id Type Default Levels Range
subset untyped - -
na.action untyped - -
F character 0 0, 1 -
L numeric 0.01 (-\infty, \infty)
R numeric 1e-04 (-\infty, \infty)
E integer 500 (-\infty, \infty)
C numeric 0.001 (-\infty, \infty)
N logical - TRUE, FALSE -
M logical - TRUE, FALSE -
S integer 1 (-\infty, \infty)
output_debug_info logical FALSE TRUE, FALSE -
do_not_check_capabilities logical FALSE TRUE, FALSE -
num_decimal_places integer 2 [1, \infty)
batch_size integer 100 [1, \infty)
options untyped NULL -

Super classes

mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifSGD

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerClassifSGD$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerClassifSGD$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

damirpolat

See Also

Examples


# Define the Learner
learner = mlr3::lrn("classif.sgd")
print(learner)

# Define a Task
task = mlr3::tsk("sonar")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()


mlr-org/mlr3extralearners documentation built on Nov. 11, 2024, 11:11 a.m.