mlr_learners_classif.aorsf: Oblique Random Forest Classifier

mlr_learners_classif.aorsfR Documentation

Oblique Random Forest Classifier

Description

Accelerated oblique random classification forest. Calls aorsf::orsf() from aorsf.

Initial parameter values

  • n_thread: This parameter is initialized to 1 (default is 0) to avoid conflicts with the mlr3 parallelization.

  • pred_simplify has to be TRUE, otherwise response is NA in prediction

Super classes

mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifObliqueRandomForest

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerClassifObliqueRandomForest$new()

Method oob_error()

OOB concordance error extracted from the model slot eval_oobag$stat_values

Usage
LearnerClassifObliqueRandomForest$oob_error()
Returns

numeric().


Method importance()

The importance scores are extracted from the model.

Usage
LearnerClassifObliqueRandomForest$importance()
Returns

Named numeric().


Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerClassifObliqueRandomForest$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

annanzrv

See Also

Examples


# Define the Learner
learner = mlr3::lrn("classif.aorsf", importance = "anova")
print(learner)

# Define a Task
task = mlr3::tsk("breast_cancer")
# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)
print(learner$importance())

# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()


mlr-org/mlr3extralearners documentation built on June 11, 2025, 7:06 p.m.