mlr_learners_classif.aorsf | R Documentation |
Accelerated oblique random classification forest.
Calls aorsf::orsf()
from aorsf.
n_thread
: This parameter is initialized to 1 (default is 0) to avoid conflicts with the mlr3 parallelization.
pred_simplify
has to be TRUE, otherwise response is NA in prediction
mlr3::Learner
-> mlr3::LearnerClassif
-> LearnerClassifObliqueRandomForest
new()
Creates a new instance of this R6 class.
LearnerClassifObliqueRandomForest$new()
oob_error()
OOB concordance error extracted from the model slot
eval_oobag$stat_values
LearnerClassifObliqueRandomForest$oob_error()
numeric()
.
importance()
The importance scores are extracted from the model.
LearnerClassifObliqueRandomForest$importance()
Named numeric()
.
clone()
The objects of this class are cloneable with this method.
LearnerClassifObliqueRandomForest$clone(deep = FALSE)
deep
Whether to make a deep clone.
annanzrv
Dictionary of Learners: mlr3::mlr_learners.
as.data.table(mlr_learners)
for a table of available Learners in the running session (depending on the loaded packages).
Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
# Define the Learner
learner = mlr3::lrn("classif.aorsf", importance = "anova")
print(learner)
# Define a Task
task = mlr3::tsk("breast_cancer")
# Create train and test set
ids = mlr3::partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
print(learner$model)
print(learner$importance())
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
# Score the predictions
predictions$score()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.