mlr_learners_classif.ksvm: Classification Kernlab Support Vector Machine

mlr_learners_classif.ksvmR Documentation

Classification Kernlab Support Vector Machine

Description

Support vector machine for classification. Calls kernlab::ksvm() from kernlab.

Dictionary

This Learner can be instantiated via lrn():

lrn("classif.ksvm")

Meta Information

  • Task type: “classif”

  • Predict Types: “response”, “prob”

  • Feature Types: “logical”, “integer”, “numeric”, “character”, “factor”, “ordered”

  • Required Packages: mlr3, mlr3extralearners, kernlab

Parameters

Id Type Default Levels Range
scaled logical TRUE TRUE, FALSE -
type character C-svc C-svc, nu-svc, C-bsvc, spoc-svc, kbb-svc -
kernel character rbfdot rbfdot, polydot, vanilladot, laplacedot, besseldot, anovadot -
C numeric 1 (-\infty, \infty)
nu numeric 0.2 [0, \infty)
cache integer 40 [1, \infty)
tol numeric 0.001 [0, \infty)
shrinking logical TRUE TRUE, FALSE -
sigma numeric - [0, \infty)
degree integer - [1, \infty)
scale numeric - [0, \infty)
order integer - (-\infty, \infty)
offset numeric - (-\infty, \infty)
coupler character minpair minpair, pkpd -

Super classes

mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifKSVM

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerClassifKSVM$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerClassifKSVM$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

mboecker

References

Karatzoglou, Alexandros, Smola, Alex, Hornik, Kurt, Zeileis, Achim (2004). “kernlab-an S4 package for kernel methods in R.” Journal of statistical software, 11(9), 1–20.

See Also

Examples


# Define the Learner
learner = mlr3::lrn("classif.ksvm")
print(learner)

# Define a Task
task = mlr3::tsk("sonar")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()


mlr-org/mlr3extralearners documentation built on Jan. 4, 2025, 5:02 p.m.