mlr_learners_classif.ksvm | R Documentation |
Support vector machine for classification.
Calls kernlab::ksvm()
from kernlab.
This Learner can be instantiated via lrn():
lrn("classif.ksvm")
Task type: “classif”
Predict Types: “response”, “prob”
Feature Types: “logical”, “integer”, “numeric”, “character”, “factor”, “ordered”
Required Packages: mlr3, mlr3extralearners, kernlab
Id | Type | Default | Levels | Range |
scaled | logical | TRUE | TRUE, FALSE | - |
type | character | C-svc | C-svc, nu-svc, C-bsvc, spoc-svc, kbb-svc | - |
kernel | character | rbfdot | rbfdot, polydot, vanilladot, laplacedot, besseldot, anovadot | - |
C | numeric | 1 | (-\infty, \infty) |
|
nu | numeric | 0.2 | [0, \infty) |
|
cache | integer | 40 | [1, \infty) |
|
tol | numeric | 0.001 | [0, \infty) |
|
shrinking | logical | TRUE | TRUE, FALSE | - |
sigma | numeric | - | [0, \infty) |
|
degree | integer | - | [1, \infty) |
|
scale | numeric | - | [0, \infty) |
|
order | integer | - | (-\infty, \infty) |
|
offset | numeric | - | (-\infty, \infty) |
|
coupler | character | minpair | minpair, pkpd | - |
mlr3::Learner
-> mlr3::LearnerClassif
-> LearnerClassifKSVM
new()
Creates a new instance of this R6 class.
LearnerClassifKSVM$new()
clone()
The objects of this class are cloneable with this method.
LearnerClassifKSVM$clone(deep = FALSE)
deep
Whether to make a deep clone.
mboecker
Karatzoglou, Alexandros, Smola, Alex, Hornik, Kurt, Zeileis, Achim (2004). “kernlab-an S4 package for kernel methods in R.” Journal of statistical software, 11(9), 1–20.
Dictionary of Learners: mlr3::mlr_learners.
as.data.table(mlr_learners)
for a table of available Learners in the running session (depending on the loaded packages).
Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
# Define the Learner
learner = mlr3::lrn("classif.ksvm")
print(learner)
# Define a Task
task = mlr3::tsk("sonar")
# Create train and test set
ids = mlr3::partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
print(learner$model)
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
# Score the predictions
predictions$score()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.