mlr_learners_classif.glmer: Classification Linear Mixed Effect Learner

mlr_learners_classif.glmerR Documentation

Classification Linear Mixed Effect Learner

Description

Generalized linear model with random effects. Calls lme4::glmer() from lme4.

Initial parameter values

  • family - Is set to stats::binomial(link = "logit").

Formula

Although most mlr3 learners don't allow to specify the formula manually, and automatically set it by valling task$formula(), this learner allows to set the formula because it's core functionality depends it. This means that it might not always use all features that are available in the task. Be aware, that this can sometimes lead to unexpected error messages, because mlr3 checks the compatibility between the learner and the task on all available features.

Dictionary

This Learner can be instantiated via lrn():

lrn("classif.glmer")

Meta Information

  • Task type: “classif”

  • Predict Types: “response”, “prob”

  • Feature Types: “logical”, “integer”, “numeric”, “factor”

  • Required Packages: mlr3, lme4

Parameters

Id Type Default Levels Range
formula untyped - -
start untyped NULL -
verbose integer 0 [0, \infty)
offset untyped NULL -
contrasts untyped NULL -
optimizer character - Nelder_Mead, bobyqa, nlminbwrap, nloptwrap -
restart_edge logical FALSE TRUE, FALSE -
boundary.tol numeric 1e-05 [0, \infty)
calc.derivs logical TRUE TRUE, FALSE -
check.nobs.vs.rankZ character ignore ignore, warning, message, stop -
check.nobs.vs.nlev character stop ignore, warning, message, stop -
check.nlev.gtreq.5 character ignore ignore, warning, message, stop -
check.nlev.gtr.1 character stop ignore, warning, message, stop -
check.nobs.vs.nRE character stop ignore, warning, message, stop -
check.rankX character message+drop.cols message+drop.cols, silent.drop.cols, warn+drop.cols, stop.deficient, ignore -
check.scaleX character warning warning, stop, silent.rescale, message+rescale, warn+rescale, ignore -
check.formula.LHS character stop ignore, warning, message, stop -
family untyped "stats::binomial(link = \"logit\")" -
nAGQ integer 1 [0, \infty)
mustart untyped - -
etastart untyped - -
check.conv.grad untyped "lme4::.makeCC(\"warning\", tol = 2e-3, relTol = NULL)" -
check.conv.singular untyped "lme4::.makeCC( action = \"message\", tol = formals(lme4::isSingular)$tol)" -
check.conv.hess untyped "lme4::.makeCC(action = \"warning\", tol = 1e-6)" -
optCtrl untyped list() -
tolPwrss untyped - -
compDev logical TRUE TRUE, FALSE -
nAGQ0initStep logical TRUE TRUE, FALSE -
check.response.not.const untyped "stop" -
newparams untyped NULL -
re.form untyped NULL -
random.only logical FALSE TRUE, FALSE -
allow.new.levels logical FALSE TRUE, FALSE -
na.action untyped "stats::na.pass" -

Super classes

mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifGlmer

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerClassifGlmer$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerClassifGlmer$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

sebffischer

References

Bates, M D (2010). “lme4: Mixed-effects modeling with R.”

See Also

Examples



# Define the Learner and set parameter values
learner = lrn("classif.glmer",
  formula = credit_risk ~ (1 | credit_history) + job + property + telephone + savings)

# Define a Task
task = tsk("german_credit")
task$select(c("credit_history", "job", "property", "telephone", "savings"))

# Train the learner
learner$train(task)

print(learner$model)


mlr-org/mlr3extralearners documentation built on Nov. 11, 2024, 11:11 a.m.