mlr_learners_classif.bart: Classification BART (Bayesian Additive Regression Trees)...

mlr_learners_classif.bartR Documentation

Classification BART (Bayesian Additive Regression Trees) Learner

Description

Bayesian Additive Regression Trees are similar to gradient boosting algorithms. The classification problem is solved by 0-1 encoding of the two-class targets and setting the decision threshold to p = 0.5 during the prediction phase. Calls dbarts::bart() from dbarts.

Dictionary

This Learner can be instantiated via lrn():

lrn("classif.bart")

Meta Information

  • Task type: “classif”

  • Predict Types: “response”, “prob”

  • Feature Types: “integer”, “numeric”, “factor”, “ordered”

  • Required Packages: mlr3, mlr3extralearners, dbarts

Parameters

Id Type Default Levels Range
ntree integer 200 [1, \infty)
k numeric 2 [0, \infty)
power numeric 2 [0, \infty)
base numeric 0.95 [0, 1]
binaryOffset numeric 0 (-\infty, \infty)
ndpost integer 1000 [1, \infty)
nskip integer 100 [0, \infty)
printevery integer 100 [0, \infty)
keepevery integer 1 [1, \infty)
keeptrainfits logical TRUE TRUE, FALSE -
usequants logical FALSE TRUE, FALSE -
numcut integer 100 [1, \infty)
printcutoffs integer 0 (-\infty, \infty)
verbose logical FALSE TRUE, FALSE -
nthread integer 1 (-\infty, \infty)
keepcall logical TRUE TRUE, FALSE -
sampleronly logical FALSE TRUE, FALSE -
seed integer NA (-\infty, \infty)
proposalprobs untyped NULL -
splitprobs untyped NULL -
keepsampler logical - TRUE, FALSE -

Parameter Changes

  • Parameter: keeptrees

  • Original: FALSE

  • New: TRUE

  • Reason: Required for prediction

  • Parameter: offset

  • The parameter is removed, because only dbarts::bart2 allows an offset during training, and therefore the offset parameter in dbarts:::predict.bart is irrelevant for dbarts::dbart.

  • Parameter: nchain, combineChains, combinechains

  • The parameters are removed as parallelization of multiple models is handled by future.

  • Parameter: sigest, sigdf, sigquant, keeptres

  • Regression only.

Super classes

mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifBart

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerClassifBart$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerClassifBart$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

ck37

References

Sparapani, Rodney, Spanbauer, Charles, McCulloch, Robert (2021). “Nonparametric machine learning and efficient computation with bayesian additive regression trees: the BART R package.” Journal of Statistical Software, 97, 1–66.

Chipman, A H, George, I E, McCulloch, E R (2010). “BART: Bayesian additive regression trees.” The Annals of Applied Statistics, 4(1), 266–298.

See Also

Examples


# Define the Learner
learner = mlr3::lrn("classif.bart")
print(learner)

# Define a Task
task = mlr3::tsk("sonar")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()


mlr-org/mlr3extralearners documentation built on Jan. 4, 2025, 5:02 p.m.