mlr_learners_classif.JRip: Classification JRip Learner

mlr_learners_classif.JRipR Documentation

Classification JRip Learner

Description

Repeated Incremental Pruning to Produce Error Reduction. Calls RWeka::JRip() from RWeka.

Dictionary

This Learner can be instantiated via lrn():

lrn("classif.JRip")

Meta Information

  • Task type: “classif”

  • Predict Types: “response”, “prob”

  • Feature Types: “integer”, “numeric”, “factor”, “ordered”

  • Required Packages: mlr3, mlr3extralearners, RWeka

Parameters

Id Type Default Levels Range
subset untyped - -
na.action untyped - -
F integer 3 [2, \infty)
N numeric 2 [0, \infty)
O integer 2 [1, \infty)
D logical FALSE TRUE, FALSE -
S integer 1 [1, \infty)
E logical FALSE TRUE, FALSE -
P logical FALSE TRUE, FALSE -
output_debug_info logical FALSE TRUE, FALSE -
do_not_check_capabilities logical FALSE TRUE, FALSE -
num_decimal_places integer 2 [1, \infty)
batch_size integer 100 [1, \infty)
options untyped NULL -

Parameter changes

  • output_debug_info:

    • original id: output-debug-info

  • do_not_check_capabilities:

    • original id: do-not-check-capabilities

  • num_decimal_places:

    • original id: num-decimal-places

  • batch_size:

    • original id: batch-size

  • Reason for change: This learner contains changed ids of the following control arguments since their ids contain irregular pattern

Super classes

mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifJRip

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerClassifJRip$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerClassifJRip$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

henrifnk

References

Cohen, W W (1995). “Fast effective rule induction.” In Machine learning proceedings 1995, 115–123. Elsevier.

See Also

Examples


# Define the Learner
learner = mlr3::lrn("classif.JRip")
print(learner)

# Define a Task
task = mlr3::tsk("sonar")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()


mlr-org/mlr3extralearners documentation built on Nov. 11, 2024, 11:11 a.m.