mlr_learners_classif.gbm: Gradient Boosting Classification Learner

mlr_learners_classif.gbmR Documentation

Gradient Boosting Classification Learner

Description

Gradient Boosting Classification Algorithm. Calls gbm::gbm() from gbm.

Dictionary

This Learner can be instantiated via lrn():

lrn("classif.gbm")

Meta Information

  • Task type: “classif”

  • Predict Types: “response”, “prob”

  • Feature Types: “integer”, “numeric”, “factor”, “ordered”

  • Required Packages: mlr3, mlr3extralearners, gbm

Parameters

Id Type Default Levels Range
distribution character bernoulli bernoulli, adaboost, huberized, multinomial -
n.trees integer 100 [1, \infty)
interaction.depth integer 1 [1, \infty)
n.minobsinnode integer 10 [1, \infty)
shrinkage numeric 0.001 [0, \infty)
bag.fraction numeric 0.5 [0, 1]
train.fraction numeric 1 [0, 1]
cv.folds integer 0 (-\infty, \infty)
keep.data logical FALSE TRUE, FALSE -
verbose logical FALSE TRUE, FALSE -
n.cores integer 1 (-\infty, \infty)
var.monotone untyped - -

Initial parameter values

  • keep.data is initialized to FALSE to save memory.

  • n.cores is initialized to 1 to avoid conflicts with parallelization through future.

Super classes

mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifGBM

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerClassifGBM$new()

Method importance()

The importance scores are extracted by gbm::relative.influence() from the model.

Usage
LearnerClassifGBM$importance()
Returns

Named numeric().


Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerClassifGBM$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

be-marc

References

Friedman, H J (2002). “Stochastic gradient boosting.” Computational statistics & data analysis, 38(4), 367–378.

See Also

Examples


# Define the Learner
learner = mlr3::lrn("classif.gbm")
print(learner)

# Define a Task
task = mlr3::tsk("sonar")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)
print(learner$importance())

# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()


mlr-org/mlr3extralearners documentation built on Dec. 21, 2024, 2:21 p.m.