mlr_learners_classif.imbalanced_rfsrc | R Documentation |
Imbalanced Random forest for classification between two classes.
Calls randomForestSRC::imbalanced.rfsrc()
from from randomForestSRC.
This Learner can be instantiated via lrn():
lrn("classif.imbalanced_rfsrc")
Task type: “classif”
Predict Types: “response”, “prob”
Feature Types: “logical”, “integer”, “numeric”, “factor”, “ordered”
Required Packages: mlr3, randomForestSRC
Id | Type | Default | Levels | Range |
ntree | integer | 500 | [1, \infty) |
|
method | character | rfq | rfq, brf, standard | - |
block.size | integer | 10 | [1, \infty) |
|
fast | logical | FALSE | TRUE, FALSE | - |
ratio | numeric | - | [0, 1] |
|
mtry | integer | - | [1, \infty) |
|
mtry.ratio | numeric | - | [0, 1] |
|
nodesize | integer | 15 | [1, \infty) |
|
nodedepth | integer | - | [1, \infty) |
|
splitrule | character | gini | gini, auc, entropy | - |
nsplit | integer | 10 | [0, \infty) |
|
importance | character | FALSE | FALSE, TRUE, none, permute, random, anti | - |
bootstrap | character | by.root | by.root, by.node, none, by.user | - |
samptype | character | swor | swor, swr | - |
samp | untyped | - | - | |
membership | logical | FALSE | TRUE, FALSE | - |
sampsize | untyped | - | - | |
sampsize.ratio | numeric | - | [0, 1] |
|
na.action | character | na.omit | na.omit, na.impute | - |
nimpute | integer | 1 | [1, \infty) |
|
ntime | integer | - | [1, \infty) |
|
cause | integer | - | [1, \infty) |
|
proximity | character | FALSE | FALSE, TRUE, inbag, oob, all | - |
distance | character | FALSE | FALSE, TRUE, inbag, oob, all | - |
forest.wt | character | FALSE | FALSE, TRUE, inbag, oob, all | - |
xvar.wt | untyped | - | - | |
split.wt | untyped | - | - | |
forest | logical | TRUE | TRUE, FALSE | - |
var.used | character | FALSE | FALSE, all.trees, by.tree | - |
split.depth | character | FALSE | FALSE, all.trees, by.tree | - |
seed | integer | - | (-\infty, -1] |
|
do.trace | logical | FALSE | TRUE, FALSE | - |
statistics | logical | FALSE | TRUE, FALSE | - |
get.tree | untyped | - | - | |
outcome | character | train | train, test | - |
ptn.count | integer | 0 | [0, \infty) |
|
cores | integer | 1 | [1, \infty) |
|
save.memory | logical | FALSE | TRUE, FALSE | - |
perf.type | character | - | gmean, misclass, brier, none | - |
case.depth | logical | FALSE | TRUE, FALSE | - |
mtry
: This hyperparameter can alternatively be set via the added
hyperparameter mtry.ratio
as mtry = max(ceiling(mtry.ratio * n_features), 1)
.
Note that mtry
and mtry.ratio
are mutually exclusive.
sampsize
: This hyperparameter can alternatively be set via the added
hyperparameter sampsize.ratio
as sampsize = max(ceiling(sampsize.ratio * n_obs), 1)
.
Note that sampsize
and sampsize.ratio
are mutually exclusive.
cores
: This value is set as the option rf.cores
during training and is
set to 1 by default.
mlr3::Learner
-> mlr3::LearnerClassif
-> LearnerClassifImbalancedRandomForestSRC
new()
Creates a new instance of this R6 class.
LearnerClassifImbalancedRandomForestSRC$new()
importance()
The importance scores are extracted from the slot importance
.
LearnerClassifImbalancedRandomForestSRC$importance()
Named numeric()
.
selected_features()
Selected features are extracted from the model slot var.used
.
LearnerClassifImbalancedRandomForestSRC$selected_features()
character()
.
oob_error()
OOB error extracted from the model slot err.rate
.
LearnerClassifImbalancedRandomForestSRC$oob_error()
numeric()
.
clone()
The objects of this class are cloneable with this method.
LearnerClassifImbalancedRandomForestSRC$clone(deep = FALSE)
deep
Whether to make a deep clone.
HarutyunyanLiana
O’Brien R, Ishwaran H (2019). “A random forests quantile classifier for class imbalanced data.” Pattern Recognition, 90, 232–249. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1016/j.patcog.2019.01.036")}.
Chao C, Leo B (2004). “Using Random Forest to Learn Imbalanced Data.” University of California, Berkeley.
Dictionary of Learners: mlr3::mlr_learners.
as.data.table(mlr_learners)
for a table of available Learners in the running session (depending on the loaded packages).
Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
# Define the Learner
learner = mlr3::lrn("classif.imbalanced_rfsrc", importance = "TRUE")
print(learner)
# Define a Task
task = mlr3::tsk("sonar")
# Create train and test set
ids = mlr3::partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
print(learner$model)
print(learner$importance())
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
# Score the predictions
predictions$score()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.