mlr_learners_classif.random_tree | R Documentation |
Tree that considers K randomly chosen attributes at each node.
Calls RWeka::make_Weka_classifier()
from RWeka.
output_debug_info
:
original id: output-debug-info
do_not_check_capabilities
:
original id: do-not-check-capabilities
num_decimal_places
:
original id: num-decimal-places
batch_size
:
original id: batch-size
Reason for change: This learner contains changed ids of the following control arguments since their ids contain irregular pattern
This Learner can be instantiated via lrn():
lrn("classif.random_tree")
Task type: “classif”
Predict Types: “response”, “prob”
Feature Types: “logical”, “integer”, “numeric”, “factor”, “ordered”
Id | Type | Default | Levels | Range |
subset | untyped | - | - | |
na.action | untyped | - | - | |
K | integer | 0 | [0, \infty) |
|
M | integer | 1 | [1, \infty) |
|
V | numeric | 0.001 | (-\infty, \infty) |
|
S | integer | 1 | (-\infty, \infty) |
|
depth | integer | 0 | [0, \infty) |
|
N | integer | 0 | [0, \infty) |
|
U | logical | FALSE | TRUE, FALSE | - |
B | logical | FALSE | TRUE, FALSE | - |
output_debug_info | logical | FALSE | TRUE, FALSE | - |
do_not_check_capabilities | logical | FALSE | TRUE, FALSE | - |
num_decimal_places | integer | 2 | [1, \infty) |
|
batch_size | integer | 100 | [1, \infty) |
|
options | untyped | NULL | - | |
mlr3::Learner
-> mlr3::LearnerClassif
-> LearnerClassifRandomTree
new()
Creates a new instance of this R6 class.
LearnerClassifRandomTree$new()
clone()
The objects of this class are cloneable with this method.
LearnerClassifRandomTree$clone(deep = FALSE)
deep
Whether to make a deep clone.
damirpolat
Dictionary of Learners: mlr3::mlr_learners.
as.data.table(mlr_learners)
for a table of available Learners in the running session (depending on the loaded packages).
Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
# Define the Learner
learner = mlr3::lrn("classif.random_tree")
print(learner)
# Define a Task
task = mlr3::tsk("sonar")
# Create train and test set
ids = mlr3::partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
print(learner$model)
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
# Score the predictions
predictions$score()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.