mlr_learners_classif.smo: Classification Support Vector Machine Learner

mlr_learners_classif.smoR Documentation

Classification Support Vector Machine Learner

Description

Support Vector classifier trained with John Platt's sequential minimal optimization algorithm. Calls RWeka::SMO() from RWeka.

Custom mlr3 parameters

  • output_debug_info:

    • original id: output-debug-info

  • do_not_check_capabilities:

    • original id: do-not-check-capabilities

  • num_decimal_places:

    • original id: num-decimal-places

  • batch_size:

    • original id: batch-size

  • E_poly:

    • original id: E

  • L_poly:

    • original id: L

  • C_poly:

    • original id: C

  • C_logistic:

    • original id: C

  • R_logistic:

    • original id: R

  • M_logistic:

    • original id: M

  • Reason for change: This learner contains changed ids of the following control arguments since their ids contain irregular pattern

Dictionary

This Learner can be instantiated via lrn():

lrn("classif.smo")

Meta Information

  • Task type: “classif”

  • Predict Types: “response”, “prob”

  • Feature Types: “logical”, “integer”, “numeric”, “factor”, “ordered”

  • Required Packages: mlr3, RWeka

Parameters

Id Type Default Levels Range
subset untyped - -
na.action untyped - -
no_checks logical FALSE TRUE, FALSE -
C numeric 1 (-\infty, \infty)
N character 0 0, 1, 2 -
L numeric 0.001 (-\infty, \infty)
P numeric 1e-12 (-\infty, \infty)
M logical FALSE TRUE, FALSE -
V integer -1 (-\infty, \infty)
W integer 1 (-\infty, \infty)
K character PolyKernel NormalizedPolyKernel, PolyKernel, Puk, RBFKernel, StringKernel -
calibrator untyped "weka.classifiers.functions.Logistic" -
E_poly numeric 1 (-\infty, \infty)
L_poly logical FALSE TRUE, FALSE -
C_poly integer 25007 (-\infty, \infty)
C_logistic logical FALSE TRUE, FALSE -
R_logistic numeric - (-\infty, \infty)
M_logistic integer -1 (-\infty, \infty)
output_debug_info logical FALSE TRUE, FALSE -
do_not_check_capabilities logical FALSE TRUE, FALSE -
num_decimal_places integer 2 [1, \infty)
batch_size integer 100 [1, \infty)
options untyped NULL -

Super classes

mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifSMO

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerClassifSMO$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerClassifSMO$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

damirpolat

References

Platt J (1998). “Fast Training of Support Vector Machines using Sequential Minimal Optimization.” In Schoelkopf B, Burges C, Smola A (eds.), Advances in Kernel Methods - Support Vector Learning. MIT Press. http://research.microsoft.com/jplatt/smo.html.

Keerthi S, Shevade S, Bhattacharyya C, Murthy K (2001). “Improvements to Platt's SMO Algorithm for SVM Classifier Design.” Neural Computation, 13(3), 637-649.

Hastie T, Tibshirani R (1998). “Classification by Pairwise Coupling.” In Jordan MI, Kearns MJ, Solla SA (eds.), Advances in Neural Information Processing Systems, volume 10.

See Also

Examples


# Define the Learner
learner = mlr3::lrn("classif.smo")
print(learner)

# Define a Task
task = mlr3::tsk("sonar")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()


mlr-org/mlr3extralearners documentation built on Jan. 4, 2025, 5:02 p.m.