mlr_learners_classif.smo | R Documentation |
Support Vector classifier trained with John Platt's sequential minimal optimization algorithm.
Calls RWeka::SMO()
from RWeka.
output_debug_info
:
original id: output-debug-info
do_not_check_capabilities
:
original id: do-not-check-capabilities
num_decimal_places
:
original id: num-decimal-places
batch_size
:
original id: batch-size
E_poly
:
original id: E
L_poly
:
original id: L
C_poly
:
original id: C
C_logistic
:
original id: C
R_logistic
:
original id: R
M_logistic
:
original id: M
Reason for change: This learner contains changed ids of the following control arguments since their ids contain irregular pattern
This Learner can be instantiated via lrn():
lrn("classif.smo")
Task type: “classif”
Predict Types: “response”, “prob”
Feature Types: “logical”, “integer”, “numeric”, “factor”, “ordered”
Id | Type | Default | Levels | Range |
subset | untyped | - | - | |
na.action | untyped | - | - | |
no_checks | logical | FALSE | TRUE, FALSE | - |
C | numeric | 1 | (-\infty, \infty) |
|
N | character | 0 | 0, 1, 2 | - |
L | numeric | 0.001 | (-\infty, \infty) |
|
P | numeric | 1e-12 | (-\infty, \infty) |
|
M | logical | FALSE | TRUE, FALSE | - |
V | integer | -1 | (-\infty, \infty) |
|
W | integer | 1 | (-\infty, \infty) |
|
K | character | PolyKernel | NormalizedPolyKernel, PolyKernel, Puk, RBFKernel, StringKernel | - |
calibrator | untyped | "weka.classifiers.functions.Logistic" | - | |
E_poly | numeric | 1 | (-\infty, \infty) |
|
L_poly | logical | FALSE | TRUE, FALSE | - |
C_poly | integer | 25007 | (-\infty, \infty) |
|
C_logistic | logical | FALSE | TRUE, FALSE | - |
R_logistic | numeric | - | (-\infty, \infty) |
|
M_logistic | integer | -1 | (-\infty, \infty) |
|
output_debug_info | logical | FALSE | TRUE, FALSE | - |
do_not_check_capabilities | logical | FALSE | TRUE, FALSE | - |
num_decimal_places | integer | 2 | [1, \infty) |
|
batch_size | integer | 100 | [1, \infty) |
|
options | untyped | NULL | - | |
mlr3::Learner
-> mlr3::LearnerClassif
-> LearnerClassifSMO
new()
Creates a new instance of this R6 class.
LearnerClassifSMO$new()
clone()
The objects of this class are cloneable with this method.
LearnerClassifSMO$clone(deep = FALSE)
deep
Whether to make a deep clone.
damirpolat
Platt J (1998). “Fast Training of Support Vector Machines using Sequential Minimal Optimization.” In Schoelkopf B, Burges C, Smola A (eds.), Advances in Kernel Methods - Support Vector Learning. MIT Press. http://research.microsoft.com/jplatt/smo.html.
Keerthi S, Shevade S, Bhattacharyya C, Murthy K (2001). “Improvements to Platt's SMO Algorithm for SVM Classifier Design.” Neural Computation, 13(3), 637-649.
Hastie T, Tibshirani R (1998). “Classification by Pairwise Coupling.” In Jordan MI, Kearns MJ, Solla SA (eds.), Advances in Neural Information Processing Systems, volume 10.
Dictionary of Learners: mlr3::mlr_learners.
as.data.table(mlr_learners)
for a table of available Learners in the running session (depending on the loaded packages).
Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
mlr3learners for a selection of recommended learners.
mlr3cluster for unsupervised clustering learners.
mlr3pipelines to combine learners with pre- and postprocessing steps.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
# Define the Learner
learner = mlr3::lrn("classif.smo")
print(learner)
# Define a Task
task = mlr3::tsk("sonar")
# Create train and test set
ids = mlr3::partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
print(learner$model)
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
# Score the predictions
predictions$score()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.