R/server.R

Defines functions server

server <- function(input, output, session) {
    actionsLog <- reactiveValues(log = c("")) # logs the actions taken wrt the plot

    ####################
    # Single-cell data #
    ####################

    sc_seq_data <- reactiveValues(gch = NULL, hcg = NULL) # for raw data
    sc_raw_data <- reactiveValues(gch = NULL, hcg = NULL)
    sc_input_data <- reactiveValues(gch = NULL, hcg = NULL) # for state matrices
    sc_input_folder <- reactiveValues(path = NULL)
    mouse_bm <- NULL
    human_bm <- NULL
    singlecell_subset <- NULL
    singlemolecule_example <- NULL
    outname <- reactiveValues(usename = "example_data")
    outname_rds <- reactiveValues(usename = "example_data")

    ## preprocessing tab
    observe({
        if (is.null(input$sc_rds_file) & input$seriate_sc == "Preprocessing" & input$big_tab == "Single-cell") {
            showNotification("Please select the input files to begin",
                type = "message", duration = 4
            )
        }
    })

    observeEvent(input$run_subset, {
        validate(need(!is.null(input$sc_met_files$name[1]) & !is.null(input$sc_acc_files$name[1]),
            message = "Please choose an input directory.", label = "sc_input_folder"
        ))

        progress <- Progress$new()
        progress$set(message = "Loading single-cell data", value = 0)
        on.exit(progress$close())
        updateProgress <- function(value = NULL, message = NULL, detail = NULL) {
            progress$set(value = value, message = message, detail = detail)
        }
        showNotification(paste("Begin SC processing at chr", input$chromosome_number))

        dat_subset <- subsetSC(
            list(
                input$sc_met_files$datapath, input$sc_acc_files$datapath,
                input$sc_met_files$data, input$sc_met_files$data
            ),
            input$chromosome_number,
            updateProgress = updateProgress
        )

        showNotification("Done with single cell processing")
        sc_raw_data$gch <- dat_subset$gch
        sc_raw_data$hcg <- dat_subset$hcg
        rm(dat_subset)
        showNotification("Removed temporary raw data; Click button to download now.", duration = 3)
    })


    observe({
        if (is.null(sc_raw_data$gch)) {
            shinyjs::disable("sc_preprocessing_down")
        } else {
            shinyjs::enable("sc_preprocessing_down")
        }
    })

    output$sc_preprocessing_down <- downloadHandler(
        filename = function() {
            paste0("methylscaper_preprocessed_", input$chromosome_number, ".rds")
        },
        content = function(file) {
            validate(need(!is.null(sc_raw_data$gch) & !is.null(sc_raw_data$hcg),
                message = "Data has not been processed."
            ))
            print("Saving data")
            saveRDS(list(gch = sc_raw_data$gch, hcg = sc_raw_data$hcg), file = file)
            sc_raw_data$gch <- NULL
            sc_raw_data$hcg <- NULL
        }
    )

    ## Visualization tab


    observe({
        if (is.null(input$sc_rds_file) & input$seriate_sc == "Visualization" & input$big_tab == "Single-cell") {
            showNotification("Provide select the RDS file to begin",
                type = "message", duration = 4
            )
        }
        if (!is.null(input$sc_rds_file)) {
            isolate({
                progress <- Progress$new()
                progress$set(message = "Loading data", value = 0)
                on.exit(progress$close())
                temp <- readRDS(input$sc_rds_file$datapath)
                sc_seq_data$gch <- temp$gch
                sc_seq_data$hcg <- temp$hcg
                outname_rds$usename <- tools::file_path_sans_ext(input$sc_rds_file$name)
                actionsLog$log <- c(actionsLog$log, paste(
                    "Loading data:",
                    input$sc_rds_file$name
                ))
            })
            if (is.null(input$organism_choice)) {
                showNotification("Now select Organism and begin selecting genes",
                    type = "message", duration = 10
                )
            }
        }
    })

    # Genes <- reactiveValues()
    observeEvent(input$organism_choice, {
        if (!is.null(sc_seq_data$gch) & !is.null(sc_seq_data$hcg)) {
            if (input$organism_choice == "Human") {
                data("human_bm", package = "methylscaper", envir = environment())
                getchr <- sc_seq_data$gch[[1]]$chr[1]
                cg_max_pos <- suppressWarnings(max(vapply(sc_seq_data$hcg, FUN = function(x) {
                    max(x$pos, na.rm = TRUE)
                }, numeric(1))))
                cg_min_pos <- suppressWarnings(min(vapply(sc_seq_data$hcg, FUN = function(x) {
                    min(x$pos, na.rm = TRUE)
                }, numeric(1))))
                gc_max_pos <- suppressWarnings(max(vapply(sc_seq_data$gch, FUN = function(x) {
                    max(x$pos, na.rm = TRUE)
                }, numeric(1))))
                gc_min_pos <- suppressWarnings(min(vapply(sc_seq_data$gch, FUN = function(x) {
                    min(x$pos, na.rm = TRUE)
                }, numeric(1))))
                getmin <- pmin(cg_min_pos, gc_min_pos)
                getmin <- max(c(0, getmin - 100000))
                getmax <- pmax(cg_max_pos, gc_max_pos)
                getmax <- max(c(0, getmax + 100000))
                hum_bm_sub <- subset(
                    human_bm,
                    human_bm$chromosome_name == getchr &
                        human_bm$start_position >= getmin &
                        human_bm$end_position <= getmax
                )
                Genes <- sort(unique(hum_bm_sub$hgnc_symbol))
            } else if (input$organism_choice == "Mouse") {
                data("mouse_bm", package = "methylscaper", envir = environment())
                getchr <- sc_seq_data$gch[[1]]$chr[1]
                cg_max_pos <- suppressWarnings(max(vapply(sc_seq_data$hcg, FUN = function(x) {
                    max(x$pos, na.rm = TRUE)
                }, numeric(1))))
                cg_min_pos <- suppressWarnings(min(vapply(sc_seq_data$hcg, FUN = function(x) {
                    min(x$pos, na.rm = TRUE)
                }, numeric(1))))
                gc_max_pos <- suppressWarnings(max(vapply(sc_seq_data$gch, FUN = function(x) {
                    max(x$pos, na.rm = TRUE)
                }, numeric(1))))
                gc_min_pos <- suppressWarnings(min(vapply(sc_seq_data$gch, FUN = function(x) {
                    min(x$pos, na.rm = TRUE)
                }, numeric(1))))
                getmin <- pmin(cg_min_pos, gc_min_pos)
                getmin <- max(c(0, getmin - 100000))
                getmax <- pmax(cg_max_pos, gc_max_pos)
                getmax <- max(c(0, getmax + 100000))

                mouse_bm_sub <- subset(mouse_bm, mouse_bm$chromosome_name == getchr &
                    mouse_bm$start_position >= getmin &
                    mouse_bm$end_position <= getmax)
                Genes <- sort(unique(mouse_bm_sub$mgi_symbol))
            } else if (input$organism_choice == "Other") {
                Genes <- "Click here to begin manual start and end selection."
            }
            updateSelectizeInput(session, "geneList",
                choices = Genes,
                server = TRUE, selected = " "
            )
        }
    })



    output$startPos <- renderUI({
        if (!is.null(sc_seq_data$gch) & !is.null(sc_seq_data$hcg) & input$geneList != "") {
            if (input$organism_choice == "Mouse") {
                data("mouse_bm", package = "methylscaper", envir = environment())
                gene_select <- subset(mouse_bm, mouse_bm$mgi_symbol == input$geneList)
            }
            if (input$organism_choice == "Human") {
                data("human_bm", package = "methylscaper", envir = environment())
                gene_select <- subset(human_bm, human_bm$hgnc_symbol == input$geneList)
            }
            if (input$organism_choice == "Other") {
                cg_max_pos <- suppressWarnings(max(vapply(sc_seq_data$hcg, FUN = function(x) {
                    max(x$pos, na.rm = TRUE)
                }, numeric(1))))
                cg_min_pos <- suppressWarnings(min(vapply(sc_seq_data$hcg, FUN = function(x) {
                    min(x$pos, na.rm = TRUE)
                }, numeric(1))))
                gc_max_pos <- suppressWarnings(max(vapply(sc_seq_data$gch, FUN = function(x) {
                    max(x$pos, na.rm = TRUE)
                }, numeric(1))))
                gc_min_pos <- suppressWarnings(min(vapply(sc_seq_data$gch, FUN = function(x) {
                    min(x$pos, na.rm = TRUE)
                }, numeric(1))))


                start <- pmax(cg_min_pos, gc_min_pos)
                gene_select <- data.frame(start_position = start)
            }
            start <- gene_select$start_position
            numericInput(
                inputId = "startPos", label = "Start Position", min = 0,
                value = start
            )
        }
    })

    output$endPos <- renderUI({
        if (!is.null(sc_seq_data$gch) & !is.null(sc_seq_data$hcg) & input$geneList != "") {
            if (input$organism_choice == "Mouse") {
                data("mouse_bm", package = "methylscaper", envir = environment())
                gene_select <- subset(mouse_bm, mouse_bm$mgi_symbol == input$geneList)
            }
            if (input$organism_choice == "Human") {
                data("human_bm", package = "methylscaper", envir = environment())
                gene_select <- subset(human_bm, human_bm$hgnc_symbol == input$geneList)
            }
            if (input$organism_choice == "Other") {
                cg_max_pos <- suppressWarnings(max(vapply(sc_seq_data$hcg, FUN = function(x) {
                    max(x$pos, na.rm = TRUE)
                }, numeric(1))))
                cg_min_pos <- suppressWarnings(min(vapply(sc_seq_data$hcg, FUN = function(x) {
                    min(x$pos, na.rm = TRUE)
                }, numeric(1))))
                gc_max_pos <- suppressWarnings(max(vapply(sc_seq_data$gch, FUN = function(x) {
                    max(x$pos, na.rm = TRUE)
                }, numeric(1))))
                gc_min_pos <- suppressWarnings(min(vapply(sc_seq_data$gch, FUN = function(x) {
                    min(x$pos, na.rm = TRUE)
                }, numeric(1))))

                end <- pmax(cg_min_pos, gc_min_pos) + 5000
                gene_select <- data.frame(end_position = end)
            }
            end <- gene_select$end_position
            numericInput(
                inputId = "endPos", label = "End Position", min = 0,
                value = end
            )
        }
    })
    output$positionSlider <- renderUI({
        if (!is.null(sc_seq_data$gch) & !is.null(sc_seq_data$hcg) & input$geneList != "") {
            isolate({
                actionsLog$log <- c(
                    actionsLog$log,
                    paste("Current gene selected: ", input$geneList)
                )
            })

            if (!is.null(input$startPos) & !is.null(input$endPos)) {
                start <- input$startPos
                end <- input$endPos

                if (end - start > 50000) {
                    showNotification("Selected range is longer than 50k bp, plot may take a few
                        seconds to render", duration = 3)
                }
                if (end - start > 100000) {
                    showNotification("Selected range is longer than 100k bp, this is not optimal for
                        visualization, reducing to 100k bp.", duration = 10)

                    end <- start + 100000
                }
                if (start > end) {
                    end <- start + 2000
                }
                len <- end - start
                if (len > 0) {
                    sliderInput(
                        inputId = "positionSliderInput",
                        label = "Position adjustment slider",
                        min = start - len, max = end + len,
                        value = c(start, end)
                    )
                }
            }
        }
    })

    observe({
        if (!is.null(input$positionSliderInput)) {
            progress <- Progress$new()
            progress$set(message = "Beginning single-cell processing", value = 0)
            on.exit(progress$close())

            updateProgress <- function(value = NULL, message = NULL, detail = NULL) {
                progress$set(value = value, message = message, detail = detail)
            }



            prep_out <- prepSC(sc_seq_data,
                input$positionSliderInput[1],
                input$positionSliderInput[2],
                updateProgress = updateProgress
            )
            if (!is.list(prep_out)) {
                shinyjs::showElement("sc_seqPlot")
                shinyjs::toggleElement("sc_seqPlot")
                showNotification("No valid sites in designated range. Choose another gene or adjust
                      start and end positions with a larger range.", duration = 5)
                isolate({
                    actionsLog$log <- c(
                        actionsLog$log,
                        paste("No valid sites for gene ", input$geneList)
                    )
                })
            } else {
                shinyjs::showElement("sc_seqPlot")
                temp_gch <- prep_out$gch

                temp_hcg <- prep_out$hcg
                if (nrow(temp_gch) == nrow(temp_hcg)) {
                    sc_coordinatesObject$refine_start <- 0
                    sc_coordinatesObject$refine_stop <- 0
                    sc_coordinatesObject$weight_start <- 0
                    sc_coordinatesObject$weight_stop <- 0
                    sc_input_data$gch <- temp_gch
                    sc_input_data$hcg <- temp_hcg
                    isolate({
                        actionsLog$log <- c(actionsLog$log, paste("Beginning single-cell data analysis"))
                        actionsLog$log <- c(actionsLog$log, paste(
                            "From position",
                            input$positionSliderInput[1],
                            "to", input$positionSliderInput[2]
                        ))
                    })
                }
            }
        }
    })


    # this object keeps track of the coordinates for refinement and weighting
    sc_coordinatesObject <- reactiveValues(
        refine_start = 0, refine_stop = 0,
        weight_start = 0, weight_stop = 0,
        weight_color = "red"
    )
    # now construct the sc_orderObject
    sc_orderObject <- reactiveValues(toClust = 0, order1 = 0)
    observe({
        if (!is.null(sc_input_data$gch) & !is.null(sc_input_data$hcg)) {
            progress <- Progress$new()
            progress$set(message = "Beginning seriation", value = 0)
            on.exit(progress$close())

            updateProgress <- function(value = NULL, message = NULL, detail = NULL) {
                progress$set(value = value, message = message, detail = detail)
            }

            tempObj <- buildOrderObjectShiny(
                sc_input_data,
                input$sc_ser_method, sc_coordinatesObject,
                updateProgress
            )
            sc_orderObject$order1 <- tempObj$order1
            sc_orderObject$toClust <- tempObj$toClust
            isolate({
                actionsLog$log <- c(
                    actionsLog$log,
                    paste("Ordering with", input$sc_ser_method)
                )
            })
        }
    })

    # this handles updates to sc_coordinatesObject
    observeEvent(input$sc_plot_brush, {
        validate(need(sc_input_data$gch, "Please provide input data"))
        n <- nrow(sc_input_data$gch)
        validate(need(sc_input_data$hcg, "Please provide input data"))
        m <- ncol(sc_input_data$hcg)
        processed_brush <- handleBrushCoordinates(input$sc_plot_brush, n, m)

        if (isolate(input$sc_brush_choice) == "Weighting") {
            sc_coordinatesObject$refine_start <- 0
            sc_coordinatesObject$refine_stop <- 0
            sc_coordinatesObject$weight_start <- processed_brush$first_col
            sc_coordinatesObject$weight_stop <- processed_brush$last_col
            sc_coordinatesObject$weight_color <- processed_brush$weight_color
            isolate({
                actionsLog$log <- c(
                    actionsLog$log,
                    paste(
                        "Weighting", processed_brush$weight_color,
                        "columns",
                        processed_brush$first_col, "to",
                        processed_brush$last_col
                    )
                )
            })
        }
        if (isolate(input$sc_brush_choice) == "Refinement") {
            s <- processed_brush$first_row
            f <- processed_brush$last_row
            if (s != f) {
                sc_coordinatesObject$refine_start <- s
                sc_coordinatesObject$refine_stop <- f
                sc_orderObject$order1 <- refineOrderShiny(isolate(sc_orderObject),
                    refine_method = isolate(input$sc_refine_method),
                    sc_coordinatesObject
                )
                isolate({
                    actionsLog$log <- c(
                        actionsLog$log,
                        paste(
                            "Refining rows",
                            processed_brush$first_row, "to",
                            processed_brush$last_row
                        )
                    )
                    actionsLog$log <- c(
                        actionsLog$log,
                        paste(
                            "Applying refinement with",
                            input$sc_refine_method
                        )
                    )
                })
            }
        }
    })

    observeEvent(input$sc_force_reverse, {
        isolate({
            if (sc_coordinatesObject$refine_start == sc_coordinatesObject$refine_stop) {
                sc_orderObject$order1 <- rev(sc_orderObject$order1)
                actionsLog$log <- c(actionsLog$log, paste(
                    "Reversing rows 1 to",
                    nrow(sc_input_data$gch)
                ))
            } else {
                sc_orderObject$order1[sc_coordinatesObject$refine_start:sc_coordinatesObject$refine_stop] <-
                    sc_orderObject$order1[sc_coordinatesObject$refine_stop:sc_coordinatesObject$refine_start]
                actionsLog$log <- c(
                    actionsLog$log,
                    paste(
                        "Reversing rows", sc_coordinatesObject$refine_start,
                        "to", sc_coordinatesObject$refine_stop
                    )
                )
            }
        })
    })


    observeEvent(input$sc_demo_data, {
        isolate({
            data("singlecell_subset", package = "methylscaper", envir = environment())
            sc_seq_data$gch <- singlecell_subset$gch
            sc_seq_data$hcg <- singlecell_subset$hcg

            showNotification("Data successfully loaded! Please select Mouse
                            under Choose Organism and select a gene (e.g.,
                            Eef1g, Mta2, or Tut1).",
                type = "default", duration = 8
            )
        })
    })


    output$sc_seqPlot <- renderPlot(
        {
            obj <- sc_orderObject
            if (sum(obj$toClust) == 0) {} else drawPlot(obj, isolate(sc_coordinatesObject))
        },
        height = function() {
            session$clientData$output_sc_seqPlot_width * .75
        }
    )


    output$sc_plot_down <- downloadHandler(
        filename = function() {
            if (input$sc_plot_filetype == "PNG") {
                return(paste0("methylscaper_", outname_rds$usename, ".png"))
            }
            if (input$sc_plot_filetype == "PDF") {
                return(paste0("methylscaper_", outname_rds$usename, ".pdf"))
            }
        },
        content = function(file) {
            if (input$sc_plot_filetype == "PNG") png(file)
            if (input$sc_plot_filetype == "PDF") pdf(file)

            drawPlot(sc_orderObject, sc_coordinatesObject,
                drawLines = FALSE, plotFast = FALSE
            )
            dev.off()
        }
    )

    output$sc_log_down <- downloadHandler(
        filename = function() {
            paste0("methylscaper_log_", outname_rds$usename, ".txt")
        },
        content = function(file) {
            fileConn <- file(file)
            writeLines(actionsLog$log, fileConn)
            close(fileConn)
        }
    )

    output$sc_info <- renderText({
        paste0(
            "Refinement selection: ", sc_coordinatesObject$refine_start,
            " ", sc_coordinatesObject$refine_stop, "\n",
            "Weighting selection: ", sc_coordinatesObject$weight_start,
            " ", sc_coordinatesObject$weight_stop
        )
    })

    observe({
        if (sum(sc_orderObject$toClust) == 0) {
            shinyjs::disable("sc_proportion_hist_download")
            shinyjs::disable("sc_proportion_data_download")
            shinyjs::disable("sc_percentC_plot_download")
            shinyjs::disable("sc_percentC_data_download")
            shinyjs::disable("sc_avg_c_plot_download")
            shinyjs::disable("sc_avg_c_data_download")
            shinyjs::disable("sc_plot_down")
            shinyjs::disable("sc_log_down")
        } else {
            shinyjs::enable("sc_proportion_hist_download")
            shinyjs::enable("sc_proportion_data_download")
            shinyjs::enable("sc_percentC_plot_download")
            shinyjs::enable("sc_percentC_data_download")
            shinyjs::enable("sc_avg_c_plot_download")
            shinyjs::enable("sc_avg_c_data_download")
            shinyjs::enable("sc_plot_down")
            shinyjs::enable("sc_log_down")
        }
    })

    output$sc_proportion_color_histogram <- renderPlot({
        obj <- sc_orderObject
        if (sum(obj$toClust) == 0) {} else {
            par(mar = c(5, 4, 2, 2))
            methyl_proportion(obj,
                makePlot = TRUE,
                type = input$sc_proportion_choice, main = "", xlab = "Proportion methylation within cells"
            )
        }
    })

    output$sc_proportion_hist_download <- downloadHandler(
        filename = function() {
            return(paste0("prop_cell_methylated_", tolower(input$sc_proportion_choice), "_", outname_rds$usename, ".pdf"))
        },
        content = function(file) {
            pdf(file)
            methyl_proportion(sc_orderObject,
                makePlot = TRUE,
                type = input$sc_proportion_choice, main = "Methylated Bases Per Cell"
            )
            dev.off()
        }
    )
    output$sc_proportion_data_download <- downloadHandler(
        filename = function() {
            return(paste0("prop_cell_methylated_", tolower(input$sc_proportion_choice), "_", outname_rds$usename, ".csv"))
        },
        content = function(file) {
            dat <- methyl_proportion(sc_orderObject,
                makePlot = FALSE,
                type = input$sc_proportion_choice, main = ""
            )
            write.csv(dat, file = file)
        }
    )

    output$sc_percent_C <- renderPlot({
        if (sum(sc_orderObject$toClust) == 0) {} else {
            par(mar = c(5, 4, 2, 2))
            methyl_percent_sites(sc_orderObject, makePlot = TRUE)
        }
    })

    output$sc_percentC_plot_download <- downloadHandler(
        filename = function() {
            return(paste0("prcnt_bases_methylated_", outname_rds$usename, ".pdf"))
        },
        content = function(file) {
            pdf(file)
            methyl_percent_sites(sc_orderObject, makePlot = TRUE)
            dev.off()
        }
    )

    output$sc_percentC_data_download <- downloadHandler(
        filename = function() {
            return(paste0("prcnt_bases_methylated_", outname_rds$usename, ".txt"))
        },
        content = function(file) {
            dat <- methyl_percent_sites(sc_orderObject, makePlot = FALSE)
            capture.output(dat, file = file)
        }
    )

    output$sc_avg_c <- renderPlot({
        obj <- sc_orderObject
        if (sum(obj$toClust) == 0) {} else {
            par(mar = c(5, 4, 2, 2))
            methyl_average_status(obj, makePlot = TRUE, window_length = input$sc_window_choice)
        }
    })

    output$sc_avg_c_data_download <- downloadHandler(
        filename = function() {
            return(paste0("avg_prcnt_bases_methylated_", outname_rds$usename, ".txt"))
        },
        content = function(file) {
            dat <- methyl_average_status(sc_orderObject, makePlot = FALSE, window_length = input$sc_window_choice)
            capture.output(dat, file = file)
        }
    )

    output$sc_avg_c_plot_download <- downloadHandler(
        filename = function() {
            return(paste0("avg_prcnt_bases_methylated_", outname_rds$usename, ".pdf"))
        },
        content = function(file) {
            pdf(file)
            methyl_average_status(sc_orderObject, makePlot = TRUE, window_length = input$sc_window_choice)
            dev.off()
        }
    )



    ########################
    # Single-molecule data #
    ########################
    sm_input_data <- reactiveValues(gch = NULL, hcg = NULL)
    sm_raw_data <- reactiveValues(gch = NULL, hcg = NULL)


    observe({
        if (input$seriate_sm == "Preprocessing" & input$big_tab == "Single-molecule") {
            showNotification("Please provide reference and FASTA files to begin",
                type = "message", duration = 4
            )
        }
        if (input$seriate_sm == "Visualization" & input$big_tab == "Single-molecule") {
            showNotification("Provide select the RDS file to begin",
                type = "message", duration = 4
            )
        }
    })

    # alignment handling
    observeEvent(input$run_align, {
        validate(
            need(input$ref_file$datapath, "Please provide the reference .fasta file."),
            need(input$fasta_file$datapath, "Please provide the reads .fasta file.")
        )

        ref <- tryCatch(read.fasta(input$ref_file$datapath),
            error = function(cond) {
                message(paste("Please check the format of your .fasta file"))
                # Choose a return value in case of error
                return(NA)
            }
        )
        if (!is.list(ref)) {
            showNotification("Please check the format of your reference .fasta file",
                type = "error", duration = 4
            )
        }


        fasta <- tryCatch(read.fasta(input$fasta_file$datapath),
            error = function(cond) {
                message(paste("Please check the format of your .fasta file"))
                # Choose a return value in case of error
                return(NA)
            }
        )
        if (!is.list(fasta)) {
            showNotification("Please check the format of your reads .fasta file",
                type = "error", duration = 4
            )
        }

        if (is.list(ref) & is.list(fasta)) {
            if (length(ref) == 1) {
                ref <- ref[[1]]
            }

            progress <- Progress$new()
            progress$set(message = "Beginning alignment", value = 0)
            on.exit(progress$close())

            updateProgress <- function(value = NULL, message = NULL, detail = NULL) {
                progress$set(value = value, message = message, detail = detail)
            }

            align_out <- tryCatch(
                runAlign(ref, fasta,
                    updateProgress = updateProgress,
                    log_file = input$processing_log_name
                ),
                error = function(cond) {
                    message(paste("No good alignments were found."))
                    # Choose a return value in case of error
                    return(NA)
                }
            )

            if (!is.list(align_out)) {
                showNotification("No good alignments were found.",
                    type = "error", duration = 4
                )
            }
            if (is.list(align_out)) {
                sm_raw_data$gch <- align_out$gch
                sm_raw_data$hcg <- align_out$hcg
                sm_raw_data$log_vector <- align_out$logs
            }
            read_name <- tools::file_path_sans_ext(input$fasta_file$name)
            ref_name <- tools::file_path_sans_ext(input$ref_file$name)
            outname$usename <- paste0(read_name, "_", ref_name)
        }
    })

    observe({
        if (is.null(sm_raw_data$hcg)) {
            shinyjs::disable("sm_preprocessing_down")
            shinyjs::disable("processing_log")
        } else {
            shinyjs::enable("sm_preprocessing_down")
            shinyjs::enable("processing_log")
        }
    })


    output$sm_preprocessing_down <- downloadHandler(
        filename = function() {
            paste0(outname$usename, ".rds")
        },
        content = function(file) {
            saveRDS(list(gch = sm_raw_data$gch, hcg = sm_raw_data$hcg), file = file)
        }
    )

    output$processing_log <- downloadHandler(
        filename = function() {
            paste0("Preprocessing_log_", outname$usename, ".txt")
        },
        content = function(file) {
            writeLines(sm_raw_data$log_vector, con = file)
        }
    )

    observe({
        if (!is.null(input$sm_rds_file)) {
            temp <- readRDS(file = input$sm_rds_file$datapath)
            temp_gch <- temp$gch
            temp_hcg <- temp$hcg
            outname_rds$usename <- tools::file_path_sans_ext(input$sm_rds_file$name)
            if (all(rownames(temp_hcg) == temp_hcg[, 1])) temp_hcg <- temp_hcg[, -1]
            if (all(rownames(temp_gch) == temp_gch[, 1])) temp_gch <- temp_gch[, -1]

            if (nrow(temp_gch) == nrow(temp_hcg)) {
                sm_coordinatesObject$refine_start <- 0
                sm_coordinatesObject$refine_stop <- 0
                sm_coordinatesObject$weight_start <- 0
                sm_coordinatesObject$weight_stop <- 0
                sm_input_data$gch <- temp_gch
                sm_input_data$hcg <- temp_hcg
                sm_input_data$datatype <- "sm"
                isolate({
                    actionsLog$log <- c(actionsLog$log, paste("Beginning
            single-molecule data analysis"))
                    actionsLog$log <- c(actionsLog$log, paste(
                        "Loading data:",
                        input$sm_rds_file$name
                    ))
                })
            }
        }
    })

    # this object keeps track of the coordinates for refinement and weighting
    sm_coordinatesObject <- reactiveValues(
        refine_start = 0, refine_stop = 0,
        weight_start = 0, weight_stop = 0,
        weight_color = "red"
    )
    # now construct the sm_orderObject
    sm_orderObject <- reactiveValues(toClust = 0, order1 = 0)
    observe({
        if (!is.null(sm_input_data$gch) & !is.null(sm_input_data$hcg)) {
            progress <- Progress$new()
            progress$set(message = "Beginning seriation", value = 0)
            on.exit(progress$close())

            updateProgress <- function(value = NULL, message = NULL, detail = NULL) {
                progress$set(value = value, message = message, detail = detail)
            }

            tempObj <- buildOrderObjectShiny(
                sm_input_data,
                input$sm_ser_method, sm_coordinatesObject, updateProgress
            )
            sm_orderObject$order1 <- tempObj$order1
            sm_orderObject$toClust <- tempObj$toClust
            isolate({
                actionsLog$log <- c(
                    actionsLog$log,
                    paste("Ordering with", input$sm_ser_method)
                )
            })
        }
    })

    # this handles updates to sm_coordinatesObject
    observeEvent(input$sm_plot_brush, {
        validate(need(sm_input_data$gch, "Please provide input data"))
        validate(need(sm_input_data$hcg, "Please provide input data"))
        n <- nrow(sm_input_data$gch)
        m <- ncol(sm_input_data$hcg)
        processed_brush <- handleBrushCoordinates(input$sm_plot_brush, n, m)

        if (isolate(input$sm_brush_choice) == "Weighting") {
            sm_coordinatesObject$refine_start <- 0
            sm_coordinatesObject$refine_stop <- 0
            sm_coordinatesObject$weight_start <- processed_brush$first_col
            sm_coordinatesObject$weight_stop <- processed_brush$last_col
            sm_coordinatesObject$weight_color <- processed_brush$weight_color
            isolate({
                actionsLog$log <- c(
                    actionsLog$log,
                    paste(
                        "Weighting",
                        processed_brush$weight_color, "columns",
                        processed_brush$first_col, "to",
                        processed_brush$last_col
                    )
                )
            })
        }
        if (isolate(input$sm_brush_choice) == "Refinement") {
            s <- processed_brush$first_row
            f <- processed_brush$last_row
            if (s != f) {
                sm_coordinatesObject$refine_start <- s
                sm_coordinatesObject$refine_stop <- f
                sm_orderObject$order1 <- refineOrderShiny(isolate(sm_orderObject),
                    refine_method = isolate(input$sm_refine_method),
                    sm_coordinatesObject
                )
                isolate({
                    actionsLog$log <- c(
                        actionsLog$log,
                        paste(
                            "Refining rows",
                            processed_brush$first_row, "to",
                            processed_brush$last_row
                        )
                    )
                    actionsLog$log <- c(
                        actionsLog$log,
                        paste(
                            "Applying refinement with",
                            input$sm_refine_method
                        )
                    )
                })
            }
        }
    })

    observeEvent(input$sm_force_reverse, {
        isolate({
            if (sm_coordinatesObject$refine_start == sm_coordinatesObject$refine_stop) {
                sm_orderObject$order1 <- rev(sm_orderObject$order1)
                actionsLog$log <- c(actionsLog$log, paste(
                    "Reversing rows 1 to",
                    nrow(sm_input_data$gch)
                ))
            } else {
                sm_orderObject$order1[sm_coordinatesObject$refine_start:sm_coordinatesObject$refine_stop] <-
                    sm_orderObject$order1[sm_coordinatesObject$refine_stop:sm_coordinatesObject$refine_start]
                actionsLog$log <- c(
                    actionsLog$log,
                    paste(
                        "Reversing rows", sm_coordinatesObject$refine_start,
                        "to", sm_coordinatesObject$refine_stop
                    )
                )
            }
        })
    })

    observeEvent(input$sm_demo_data, {
        isolate({
            data("singlemolecule_example", package = "methylscaper", envir = environment())
            sm_input_data$gch <- singlemolecule_example$gch
            sm_input_data$hcg <- singlemolecule_example$hcg
        })
    })


    output$sm_seqPlot <- renderPlot(
        {
            obj <- sm_orderObject
            if (sum(obj$toClust) == 0) {} else {
                sz <- session$clientData$output_sm_seqPlot_width
                drawPlot(obj, isolate(sm_coordinatesObject), shinySizer = sz)
            }
        },
        height = function() {
            session$clientData$output_sm_seqPlot_width
        }
    )



    output$sm_plot_down <- downloadHandler(
        filename = function() {
            if (input$sm_filetype == "PNG") {
                return(paste0("methylscaper_", outname_rds$usename, ".png"))
            }
            if (input$sm_filetype == "PDF") {
                return(paste0("methylscaper_", outname_rds$usename, ".pdf"))
            }
        },
        content = function(file) {
            if (input$sm_filetype == "PNG") png(file)
            if (input$sm_filetype == "PDF") pdf(file)

            drawPlot(sm_orderObject, sm_coordinatesObject,
                drawLines = FALSE, plotFast = FALSE
            )
            dev.off()
        }
    )

    output$sm_log_down <- downloadHandler(
        filename = function() {
            paste0("methylscaper_log_", outname_rds$usename, ".txt")
        },
        content = function(file) {
            fileConn <- file(file)
            writeLines(actionsLog$log, fileConn)
            close(fileConn)
        }
    )

    output$sm_info <- renderText({
        paste0(
            "Refinement selection: ", sm_coordinatesObject$refine_start, " ",
            sm_coordinatesObject$refine_stop, "\n",
            "Weighting selection: ", sm_coordinatesObject$weight_start, " ",
            sm_coordinatesObject$weight_stop
        )
    })


    observe({
        if (sum(sm_orderObject$toClust) == 0) {
            shinyjs::disable("sm_proportion_hist_download")
            shinyjs::disable("sm_proportion_data_download")
            shinyjs::disable("sm_percentC_plot_download")
            shinyjs::disable("sm_percentC_data_download")
            shinyjs::disable("sm_avg_c_plot_download")
            shinyjs::disable("sm_avg_c_data_download")
            shinyjs::disable("sm_plot_down")
            shinyjs::disable("sm_log_down")
        } else {
            shinyjs::enable("sm_proportion_hist_download")
            shinyjs::enable("sm_proportion_data_download")
            shinyjs::enable("sm_percentC_plot_download")
            shinyjs::enable("sm_percentC_data_download")
            shinyjs::enable("sm_avg_c_plot_download")
            shinyjs::enable("sm_avg_c_data_download")
            shinyjs::enable("sm_plot_down")
            shinyjs::enable("sm_log_down")
        }
    })


    output$sm_proportion_color_histogram <- renderPlot({
        obj <- sm_orderObject
        if (sum(obj$toClust) == 0) {} else {
            par(mar = c(5, 4, 2, 2))
            methyl_proportion(obj,
                makePlot = TRUE,
                type = input$sm_proportion_choice, main = "", xlab = "Proportion methylation within molecules"
            )
        }
    })

    output$sm_proportion_hist_download <- downloadHandler(
        filename = function() {
            if (input$sm_proportion_choice == "Accessibility Methylation") {
                whichMeth <- "acc"
            } else {
                whichMeth <- "met"
            }
            return(paste0("prop_molecule_methylated_", whichMeth, "_", outname_rds$usename, ".pdf"))
        },
        content = function(file) {
            pdf(file)
            methyl_proportion(sm_orderObject,
                makePlot = TRUE,
                type = input$sm_proportion_choice, main = "Methylated Bases Per Molecule"
            )
            dev.off()
        }
    )
    output$sm_proportion_data_download <- downloadHandler(
        filename = function() {
            if (input$sm_proportion_choice == "Accessibility Methylation") {
                whichMeth <- "acc"
            } else {
                whichMeth <- "met"
            }
            return(paste0("prop_molecule_methylated_", whichMeth, "_", outname_rds$usename, ".csv"))
        },
        content = function(file) {
            dat <- methyl_proportion(sm_orderObject,
                makePlot = FALSE,
                type = input$sm_proportion_choice, main = "Methylated Basepairs Per Molecule"
            )
            write.csv(dat, file = file)
        }
    )

    output$sm_percent_C <- renderPlot({
        obj <- sm_orderObject
        if (sum(obj$toClust) == 0) {} else {
            par(mar = c(5, 4, 2, 2))
            methyl_percent_sites(obj, makePlot = TRUE)
        }
    })

    output$sm_percentC_plot_download <- downloadHandler(
        filename = function() {
            return(paste0("prcnt_bases_methylated_", outname_rds$usename, ".pdf"))
        },
        content = function(file) {
            pdf(file)
            methyl_percent_sites(sm_orderObject, makePlot = TRUE)
            dev.off()
        }
    )

    output$sm_percentC_data_download <- downloadHandler(
        filename = function() {
            return(paste0("prcnt_bases_methylated_", outname_rds$usename, ".txt"))
        },
        content = function(file) {
            dat <- methyl_percent_sites(sm_orderObject, makePlot = FALSE)
            capture.output(dat, file = file)
        }
    )

    output$sm_avg_c <- renderPlot({
        obj <- sm_orderObject
        if (sum(obj$toClust) == 0) {} else {
            par(mar = c(5, 4, 2, 2))
            methyl_average_status(obj, makePlot = TRUE, window_length = input$sm_window_choice)
        }
    })

    output$sm_avg_c_data_download <- downloadHandler(
        filename = function() {
            return(paste0("avg_prcnt_bases_methylated_", outname_rds$usename, ".txt"))
        },
        content = function(file) {
            dat <- methyl_average_status(sm_orderObject, makePlot = FALSE, window_length = input$sm_window_choice)
            capture.output(dat, file = file)
        }
    )

    output$sm_avg_c_plot_download <- downloadHandler(
        filename = function() {
            return(paste0("avg_prcnt_bases_methylated_", outname_rds$usename, ".pdf"))
        },
        content = function(file) {
            pdf(file)
            methyl_average_status(sm_orderObject, makePlot = TRUE, window_length = input$sm_window_choice)
            dev.off()
        }
    )
}
rhondabacher/methylscaper documentation built on Oct. 10, 2024, 8:18 a.m.