graph.communities: Graph Communities

Description Usage Arguments Examples

View source: R/tools.R

Description

This function allows you to detect how many communities are in the graph and to which community each node and edge belongs.

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
graph.communities(
  x,
  algorithm = c("louvain", "edge.betweenness", "fast.greedy", "label.prop",
    "leading.eigen", "optimal", "spinglass", "walktrap"),
  network = TRUE,
  network.layout = c("circle", "star", "grid", "sphere", "nicely"),
  interactive.network = FALSE,
  network.isolated = TRUE,
  dendrogram = FALSE,
  dendrogram.type = c("fan", "phylogram", "cladogram", "unrooted", "radial"),
  from = c("auto", "adjacency", "edges", "graph", "igraph", "bnlearn")
)

Arguments

x

Graph object.

algorithm

Algorithm for finding communities: 'louvain', 'edge.betweenness', 'fast.greedy', 'label.prop', 'leading.eigen', 'optimal', 'spinglass', or 'walktrap'. Default: 'louvain'

network

Whether or not to plot the network. Default: TRUE

network.layout

igraph network layout (optional): 'grid', 'star', 'circle', 'sphere', or 'nicely'. Default: 'circle'

interactive.network

Interactive network (optional). Default: FALSE

network.isolated

Whether or not to include isolated nodes in the plot (optional). Default: TRUE

dendrogram

Whether or not to plot a dendrogram (when possible). Default: FALSE

dendrogram.type

Type of phylogeny to be drawn: 'fan', 'phylogram', 'cladogram', 'unrooted', or 'radial'. Default: 'fan'

from

Input format (optional).

Examples

1
2
3
communities <- graph.communities(g)
communities <- graph.communities(g, algorithm='louvain', network=TRUE, network.isolated=FALSE, dendrogram=FALSE)
communities <- graph.communities(g, algorithm='walktrap', network=FALSE, dendrogram=TRUE, dendrogram.type='cladogram')

rlebron-bioinfo/gnlearn documentation built on July 25, 2020, 12:38 p.m.