Description Usage Arguments Examples
This function allows you to learn a directed graph from a high-dimensional dataset.
1 2 3 4 5 6 7 8 9 10 11 12 13 | huge.graph(
df,
algorithm = boot.pc,
n.genes = 15,
R = 200,
threshold = 0.5,
iter.R = 4,
iter.m = NULL,
to = c("igraph", "adjacency", "edges", "graph", "bnlearn"),
cluster = parallel::detectCores(),
seed = sample(1:10^6, 1),
...
)
|
df |
Dataset. |
algorithm |
Algorithm to be used (any of the gnlearn 'boot.x' algorithms, such as boot.pc or boot.hc). Default: boot.pc |
n.genes |
Number of random genes per iteration. Default: 15 |
R |
Number of iterations. Defaults: 200 |
threshold |
Minimum strength required for a coefficient to be included in the average adjacency matrix (optional). Default: 0.5 |
iter.R |
Number of bootstrap replicates. Default: 200 |
iter.m |
Size of training set. Default: nrow(df)/2 |
to |
Output format ('adjacency', 'edges', 'graph', 'igraph', or 'bnlearn'). |
cluster |
A cluster object from package parallel or the number of cores to be used (optional). Default: parallel::detectCores() |
seed |
Seed used for random selection. Default: NULL |
... |
Other arguments for the specified algorithm. |
1 2 3 4 5 | obj <- huge.graph(df, algorithm=boot.tabu)
obj <- huge.graph(df, algorithm=boot.lingam)
obj <- huge.graph(df, algorithm=boot.iamb, n.genes=20, R=100, threshold=0.9, iter.R=10)
avg.g <- obj$average
g.rep <- obj$replicates
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.