###############################################################################
## RMX estimator for probability of success of a binomial model
###############################################################################
rowRmx.binom <- function(x, eps.lower = 0, eps.upper, eps = NULL, initial.est = NULL,
k = 3L, fsCor = FALSE, na.rm = TRUE, size, computeSE = FALSE,
parallel = FALSE, ncores = NULL, aUp = 100*size,
cUp = 1e4, delta = 1e-9){
if(!is.null(eps)){
if(eps == 0){
rmxEst <- matrix(rowMeans(x)/size, ncol = 1)
colnames(rmxEst) <- "prob"
Info.matrix <- matrix(c("rowRmx",
paste("ML estimate")),
ncol = 2, dimnames = list(NULL, c("method", "message")))
if(computeSE){
asSE <- matrix(sqrt((rmxEst*(1-rmxEst))/size)/sqrt(ncol(x)),
ncol = 1)
colnames(asSE) <- "SE.prob"
}else{
asSE <- NA
}
RMX <- list(model = "binom", modelName = "binomial probability",
rmxEst = rmxEst, asSE = asSE, radius = 0,
Infos = Info.matrix)
class(RMX) <- "RMXlist"
return(RMX)
}
}
if(ncol(x) <= 2){
stop("A sample size of at least 3 is required!")
}
if(is.null(initial.est)){
prob <- rowCVM(x, model = "binom", size = size,
parallel = parallel, ncores = ncores)
}else{
stopifnot(is.numeric(initial.est))
if(is.matrix(initial.est)){
if(nrow(initial.est) != nrow(x) || ncol(initial.est) != 1)
stop("'initial.est' has wrong dimension")
prob <- initial.est[,1]
}else{
if(length(initial.est) != nrow(x))
stop("Length of 'initial.est' not equal to 'nrow(x)'")
prob <- initial.est
}
}
lcr <- .lcr.binom(prob = median(prob), size = size)
if(!is.null(eps)){
r <- sqrt(ncol(x))*eps
if(fsCor){
r.as <- r
if(r < lcr){
r <- fsRadius.binom(r = r, n = ncol(x),
size = size, prob = median(prob),
parallel = parallel, ncores = ncores)
}
}
}else{
sqrtn <- sqrt(ncol(x))
rlo <- sqrtn*eps.lower
rup <- sqrtn*eps.upper
if(rlo >= lcr){
r <- (rlo + rup)/2
r.as <- r
}else{
r <- uniroot(.getInterval.binom, lower = rlo+1e-8, upper = rup,
tol = .Machine$double.eps^0.25, rlo = rlo,
rup = rup, prob = median(prob), size = size,
aUp = aUp, cUp = cUp, delta = delta)$root
r.as <- r
}
if(fsCor){
r.as <- r
if(r < lcr){
r <- fsRadius.binom(r = r, n = ncol(x),
size = size, prob = median(prob),
parallel = parallel, ncores = ncores)
}
}
}
if(!is.null(eps)){
if(r >= lcr){
LM <- .getMBLM.binom(size = size, prob = prob)
}else{
LM <- .getLM.binom.vector(r0 = r, prob = prob, size = size,
parallel = parallel, ncores = ncores,
aUp = aUp, cUp = cUp, delta = delta)
}
rmxEst.all <- .kstep.binom.matrix(x = x, r = r, LM = LM, k = k,
prob = prob, na.rm = na.rm, size = size,
parallel = parallel, ncores = ncores,
aUp = aUp, cUp = cUp, delta = delta)
rmxEst <- rmxEst.all$prob
colnames(rmxEst) <- "prob"
if(computeSE){
asVar <- rmxEst.all$LM$asVar
asSE <- matrix(sqrt(asVar/ncol(x)), ncol = 1)
colnames(asSE) <- "SE.prob"
}else{
asSE <- NA
}
if(fsCor){
Info.matrix <- matrix(c("rmx",
paste("fs-corrected estimate for 'eps' =",
round(eps, 3))),
ncol = 2, dimnames = list(NULL, c("method", "message")))
}else{
Info.matrix <- matrix(c("rmx",
paste("asymptotic estimate for 'eps' =",
round(eps, 3))),
ncol = 2, dimnames = list(NULL, c("method", "message")))
}
}else{
if(r >= lcr){
LM <- .getMBLM.binom(size = size, prob = prob)
}else{
LM <- .getLM.binom.vector(r0 = r, prob = prob, size = size,
parallel = parallel, ncores = ncores,
aUp = aUp, cUp = cUp, delta = delta)
}
if(rlo == 0){
ineff <- median((LM$A - LM$b^2*r.as^2)/(prob*(1-prob))*size)
}else{
if(rlo >= lcr){
ineff <- 1
}else{
ineff <- median((LM$A - LM$b^2*(r.as^2 - rlo^2))/LM$A)
}
}
rmxEst.all <- .kstep.binom.matrix(x = x, r = r, LM = LM, k = k,
prob = prob, na.rm = na.rm, size = size,
parallel = parallel, ncores = ncores,
aUp = aUp, cUp = cUp, delta = delta)
rmxEst <- rmxEst.all$prob
colnames(rmxEst) <- "prob"
if(computeSE){
asVar <- rmxEst.all$LM$A - r^2*rmxEst.all$LM$b^2
asSE <- matrix(sqrt(asVar/ncol(x)), ncol = 1)
colnames(asSE) <- "SE.prob"
}else{
asSE <- NA
}
if(fsCor){
Info.matrix <- matrix(c(rep("rmx", 3),
paste("fs-corrected rmx estimate for 'eps' in [",
round(eps.lower, 3), ", ", round(eps.upper, 3), "]", sep = ""),
paste("least favorable (uncorrected) contamination: ",
100*signif(r.as/sqrtn, 3), " %", sep = ""),
paste("maximum asymptotic MSE-inefficiency: ", signif(ineff, 3), sep = "")),
ncol = 2, dimnames = list(NULL, c("method", "message")))
}else{
Info.matrix <- matrix(c(rep("rmx", 3),
paste("rmx estimate for 'eps' in [",
round(eps.lower, 3), ", ", round(eps.upper, 3), "]", sep = ""),
paste("least favorable contamination: ",
100*signif(r/sqrtn, 3), " %", sep = ""),
paste("maximum asymptotic MSE-inefficiency: ",
signif(ineff, 3), sep = "")),
ncol = 2, dimnames = list(NULL, c("method", "message")))
}
}
RMX <- list(model = "binom", modelName = "binomial probability",
rmxEst = rmxEst, asSE = asSE, radius = r,
Infos = Info.matrix)
class(RMX) <- "RMXlist"
RMX
}
##################################################################
## Lagrange multipliers of minimum bias estimator
##################################################################
.getMBLM.binom <- function(prob, size){
m0 <- qbinom(0.5, size=size, prob=prob)
p1 <- pbinom(m0, size=size, prob=prob)
p2 <- pbinom(m0-1, size=size-1, prob=prob)
inte <- m0*(2*p1 - 1) + size*prob*(1-2*p2)
b <- prob*(1-prob)/inte
p3 <- pbinom(m0-1, size = size, prob = prob)
p4 <- pbinom(m0, size = size, prob = prob, lower.tail = FALSE)
p5 <- dbinom(m0, size = size, prob = prob)
beta <- (p3 - p4)/p5
A <- rep(1, length(prob))
a <- -size*prob/(prob*(1-prob))
list(A = A, a = a, b = b, beta = beta, asVar = b^2, MB = TRUE)
}
##################################################################
## Lagrange multipliers of minimum bias estimator
##################################################################
.getLM.binom.vector <- function(r0, prob, size, parallel, ncores,
aUp = 100*size, cUp = 1e4, delta = 1e-9){
fun <- function(prob, r0, size, aUp, cUp, delta){
res <- .getLM.binom(r0 = r0, prob = prob, size = size, aUp = aUp,
cUp = cUp, delta = delta)
list(A = res$A, a = res$A*res$z, b = res$A*res$c0)
}
if(parallel){
if(is.null(ncores)){
cores <- detectCores()
cl <- makeCluster(cores[1]-1)
}else{
cl <- makeCluster(ncores)
}
clusterExport(cl, list(".getLM.binom", ".getc.binom", ".geta.binom"),
envir = environment(fun = .getLM.binom.vector))
LM <- parSapply(cl = cl, X = prob, FUN = fun, r0 = r0, size = size,
aUp = aUp, cUp = cUp, delta = delta)
stopCluster(cl)
}else{
LM <- sapply(prob, fun, size = size, r0 = r0, aUp = aUp, cUp = cUp,
delta = delta)
}
list(A = unlist(LM["A",]), a = unlist(LM["a",]), b = unlist(LM["b",]),
asVar = unlist(LM["A",]) - r0^2*unlist(LM["b",])^2, MB = FALSE)
}
###############################################################################
## computation of k-step construction
###############################################################################
.onestep.binom.matrix <- function(x, LM, prob, size, na.rm){
if(LM$MB){
M <- qbinom(0.5, prob = prob, size = size)
IFx <- rowMeans(LM$b*((x > M) - (x < M) + LM$beta*(x == M)), na.rm = na.rm)
}else{
Y <- LM$A*(x-size*prob)/(prob*(1-prob)) - LM$a
ind <- LM$b <= abs(Y)
IFx <- rowMeans(Y*(ind*LM$b/abs(Y) + !ind), na.rm = na.rm)
}
pmin(pmax(.Machine$double.eps, prob + IFx), 1-.Machine$double.eps)
}
.updateLM.binom.matrix <- function(prob, LM, size, r, parallel, ncores,
aUp = 100*size, cUp = 1e4, delta = 1e-9){
if(r == 0){
A <- (prob*(1-prob))/size
a <- rep(0, length(A))
b <- rep(Inf, length(A))
return(list(A = A, a = a, b = b, asVar = A))
}
lcr <- .lcr.binom(size = size, prob = median(prob))
if(r >= lcr){
LM <- .getMBLM.binom(prob = prob, size = size)
return(LM)
}
LM <- .getLM.binom.vector(r0 = r, prob = prob, size = size,
parallel = parallel, ncores = ncores,
aUp = aUp, cUp = cUp, delta = delta)
LM
}
.kstep.binom.matrix <- function(x, r, LM, prob, na.rm, size, k, parallel, ncores,
aUp = 100*size, cUp = 1e4, delta = 1e-9){
prob <- .onestep.binom.matrix(x = x, LM = LM, prob = prob, size = size,
na.rm = na.rm)
if(k > 1){
for(i in 2:k){
LM <- .updateLM.binom.matrix(prob = prob, LM = LM, size = size, r = r,
parallel = parallel, ncores = ncores,
aUp = aUp, cUp = cUp, delta = delta)
prob <- .onestep.binom.matrix(x = x, LM = LM, prob = prob, size = size,
na.rm = na.rm)
}
}
LM <- .updateLM.binom.matrix(prob = prob, LM = LM, size = size, r = r,
parallel = parallel, ncores = ncores,
aUp = aUp, cUp = cUp, delta = delta)
list(prob = matrix(prob, ncol = 1), LM = LM)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.