Nothing
##' Fit the discrete COMPASS Model
##'
##' This function fits the \code{COMPASS} model from a user-provided set of
##' stimulated / unstimulated matrices. See the NOTE for important details.
##'
##' @note n_s and n_u counts matrices should contain ALL 2^M possible combinations of markers, even if they are 0 for some combinations. The code expects the marker combinations to be named in the following way:
##' \code{"M1&M2&!M3"} means the combination represents cells expressing marker "M1" and "M2" and not "M3". For 3 markers, there should be 8 such combinations, such that n_s and n_u have 8 columns.
##' @param n_s The cell counts for stimulated cells.
##' @param n_u The cell counts for unstimulated cells.
##' @param meta A \code{data.frame} of metadata, describing the individuals
##' in the experiment. Each row in \code{meta} should correspond to a row
##' in \code{data}. There should be one row for each subject;
##' i.e., one row for each element of \code{n_s} and \code{n_u}.
##' @param individual_id The name of the vector in \code{meta} that denotes the
##' individuals from which samples were drawn.
##' @param iterations The number of iterations (per 'replication') to perform.
##' @param replications The number of 'replications' to perform. In order to
##' conserve memory, we only keep the model estimates from the last replication.
##' @param verbose Boolean; if \code{TRUE} we output progress information.
##' @return A \code{list} with class \code{COMPASSResult} with two components,
##' the \code{fit} containing parameter estimates and parameter acceptance
##' rates, and \code{data} containing the generated data used as input for
##' the model.
##' @export
##' @examples
##' set.seed(123)
##' n <- 10 ## number of subjects
##' k <- 3 ## number of markers
##'
##' ## generate some sample data
##' iid_vec <- paste0("iid_", 1:n) # Subject id
##' data <- replicate(2*n, {
##' nrow <- round(runif(1) * 1E4 + 1000)
##' ncol <- k
##' vals <- rexp( nrow * ncol, runif(1, 1E-5, 1E-3) )
##' vals[ vals < 2000 ] <- 0
##' output <- matrix(vals, nrow, ncol)
##'output <- output[ apply(output, 1, sum) > 0, ]
##'colnames(output) <- paste0("M", 1:k)
##'return(output)
##'})
##'
##' meta <- cbind(iid=iid_vec, data.frame(trt=rep( c("Control", "Treatment"), each=n/2 )))
##'
##' ## generate counts for n_s, n_u
##' n_s <- CellCounts( data[1:n], Combinations(k) )
##' n_u <- CellCounts( data[(n+1):(2*n)], Combinations(k) )
##' rownames(n_s) = unique(meta$iid)
##' rownames(n_u) = rownames(n_s)
##' ## A smaller number of iterations is used here for running speed;
##' ## prefer using more iterations for a real fit
##' scr = SimpleCOMPASS(n_s, n_u, meta, "iid", iterations=1000)
SimpleCOMPASS <- function(n_s, n_u, meta, individual_id,
iterations=1E4, replications=8, verbose=TRUE) {
# Order, n_s, n_u, and meta (if needed)
rn_s <- rownames(n_s)
rn_u <- rownames(n_u)
iid <- as.character(meta[, individual_id])
if(!identical(rn_s, rn_u) | !identical(rn_s, iid)) {
n_s <- n_s[order(rn_s),]
n_u <- n_u[order(rn_u),]
meta <- meta[order(iid),]
message("Ordering meta, n_s and n_u by individual_id since this wasn't done.\n",
"If you think this is an error, check your data and rerun the code.")
}
set.seed(100);
if (!all(colnames(n_s) == colnames(n_u))) {
stop("The column names of 'n_s' and 'n_u' do not match.")
}
n_markers <- log2( ncol(n_s) )
if (!(n_markers == as.integer(n_markers))) {
warning("Could not infer the number of markers correctly; it looks like ",
"you may have filtered some cell-subsets. If that is the case, you can ignore this warning.")
}
## Guess the marker names
marker_names <- unique(
unlist( strsplit( gsub("!", "", colnames(n_s)), "&", fixed=TRUE ) )
)
n_markers <- length(marker_names)
cats <- as.data.frame( matrix(0, nrow=ncol(n_s), ncol=n_markers) )
rownames(cats) <- colnames(n_s)
colnames(cats) = marker_names
for (i in seq_along(cats)) {
#cats[, i] <- as.integer(grepl( paste0( colnames(cats)[i], "+" ), rownames(cats), fixed=TRUE ))
cats[,i] <-
as.integer(!grepl(paste0("!",colnames(cats)[i],"(&|$)+"),rownames(cats),fixed =
FALSE))
}
cats$Counts <- apply(cats, 1, sum)
cats <- as.matrix(cats)
n_s <- as.matrix(n_s)
counts_s <- rowSums(n_s)
n_u <- as.matrix(n_u)
counts_u <- rowSums(n_u)
.fit <- .COMPASS.discrete(
n_s=n_s,
n_u=n_u,
categories=cats,
iterations=iterations,
replications=replications,
verbose=TRUE
)
fit <- list(
fit=.fit,
data=list(
n_s=n_s,
n_u=n_u,
counts_s=counts_s,
counts_u=counts_u,
categories=cats,
meta=meta,
individual_id=individual_id
)
)
class(fit) <- c("COMPASSResult")
return(fit)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.