inst/shiny-examples/DOSCHEDA_app/app.R

# https://bruniec.shinyapps.io/doscheda/

library(hexbin)
library(MASS)
library(shiny)
library(shinydashboard)
library(stringr)
library(affy)
library(limma)
library(DT)
library(ggplot2)
library(vsn)
library(gridExtra)
library(lattice)
library(corrgram)
library(calibrate)
library(reshape2)
library(readxl)
library(MASS)
library(lazyeval)
library(drc)
library(httr)
library(jsonlite)
library(rmarkdown)
library(dplyr)
library(prodlim)


################### Load Function

loadingLogo <- function( src, loadingsrc, height = NULL, width = NULL, alt = NULL) {
  tagList(
    tags$head(
      tags$script(
        "setInterval(function(){
        if ($('html').attr('class')=='shiny-busy') {
        $('div.busy').show();
        $('div.notbusy').hide();
        } else {
        $('div.busy').hide();
        $('div.notbusy').show();
        }
},100)")
  ),
  tags$a(
    div(class = "busy",
        img(src=loadingsrc,height = height, width = width, alt = alt)),
    div(class = 'notbusy',
        img(src = src, height = height, width = width, alt = alt))
  )
    )
  }


# plotting functions for sigmoidal
shape_for_ggplot_pred<-function(df_ordered,conc,pred.names){
  cols_to_keep_pred<-c(pred.names,"GeneID","Accession")
  
  forggplot_pred<-vector(mode = "list",length = length(df_ordered$GeneID))
  
  for(i in 1:length(df_ordered$GeneID)){
    tmp_pred<-df_ordered[,cols_to_keep_pred]
    forggplot_pred[[i]]<-melt(tmp_pred[i,], id = c("GeneID", "Accession"), na.rm = TRUE)
  }
  
  forggplot_pred_1<-do.call(rbind, forggplot_pred)
  forggplot_pred_1<-data.frame(forggplot_pred_1,"x"=conc)
  #return(forggplot_pred_1)
}

shape_for_ggplot_perc<-function(df_ordered,conc,finalNames){
  cols_to_keep_perc<-c(finalNames, "GeneID","Accession")
  
  forggplot_perc<- vector(mode = "list",length = length(df_ordered$GeneID))
  for(i in 1:length(df_ordered$GeneID)){
    tmp_perc<-df_ordered[,cols_to_keep_perc]
    forggplot_perc[[i]]<-melt(tmp_perc[i,], id = c("GeneID", "Accession"), na.rm = TRUE)
  }
  
  forggplot_perc_1<-do.call(rbind, forggplot_perc)
  forggplot_perc_1<-data.frame(forggplot_perc_1,"x"=conc)
  #return(forggplot_perc_1)
}


pie_chart <- function(df, main, labels = NULL, condition = NULL) {
  
  # convert the data into percentages. group by conditional variable if needed
  df <- group_by_(df, .dots = c(condition, main)) %>%
    summarise(counts = n()) %>%
    mutate(perc = counts / sum(counts)) %>%
    arrange(desc(perc)) %>%
    mutate(label_pos = cumsum(perc) - perc / 2,
           perc_text = paste0(round(perc * 100), "%", "\n","(",counts, ")"))
  
  # reorder the category factor levels to order the legend
  df[[main]] <- factor(df[[main]], levels = unique(df[[main]]))
  
  # if labels haven't been specified, use what's already there
  if (is.null(labels)) labels <- as.character(df[[main]])
  
  p <- ggplot(data = df, aes_string(x = factor(1), y = "perc", fill = main)) +
    
    # make stacked bar chart with black border
    geom_bar(stat = "identity", color = "black", width = 1) +
    
    # add the percents to the interior of the chart
    geom_text(aes(x = 1.25, y = label_pos, label = perc_text), size = 4) +
    
    # add the category labels to the chart
    # increase x / play with label strings if labels aren't pretty
    geom_text(aes(x = 1.82, y = label_pos, label = labels), size = 4) +
    
    # convert to polar coordinates
    coord_polar(theta = "y") +
    
    # formatting
    scale_y_continuous(breaks = NULL) +
    scale_fill_discrete(name = "", labels = unique(labels)) +
    theme(text = element_text(size = 12),
          axis.ticks = element_blank(),
          axis.text = element_blank(),
          axis.title = element_blank())
  
  # facet wrap if that's happening
  if (!is.null(condition)) p <- p + facet_wrap(condition)
  
  return(p)
}


##upload kinase file
kinome1<-read.csv(file="KinaseFile.csv",  header=TRUE, sep=",")
kinome<-as.vector(toupper(kinome1$new.Symbol))

logvc<- function(x) sqrt(exp(x*log(2))^2 - 1 )

# Peptide matching function

peptide.match<- function(dr1,dr2,nchan){
  maxrow <- max(nrow(dr1),nrow(dr2))
  minrow <- min(nrow(dr1),nrow(dr2))
  
  adVal <- maxrow - minrow
  
  if(nrow(dr1) == maxrow){
    dr2$addedVals <- adVal
    big.pep <- dr1
    small.pep <- dr2
  } else {
    dr1$addedVals <- adVal
    big.pep <- dr2
    small.pep <- dr1
  }
  
  
  newframe <- big.pep
  colnames(newframe) <- colnames(small.pep)
  newframe[1:minrow,] <- small.pep
  
  for(i in  1:nchan){
    
    newframe[(minrow+1):maxrow,i]<- mean(small.pep[,i])
  }
  
  
  if (all.equal(dim(big.pep),dim(dr1)) == TRUE){
    
    dr2 <- newframe
  } else {
    dr1 <- newframe
  }
  
  list(dr1 = dr1, dr2 = dr2 )
}

panel.shadeNtext <- function (x, y, corr = NULL, col.regions, ...)
{
  if (is.null(corr))
    corr <- cor(x, y, use = "
                pair")
  ncol <- 14
  pal <- col.regions(ncol)
  col.ind <- as.numeric(cut(corr, breaks = seq(from = -1, to = 1,
                                               length = ncol + 1), include.lowest = TRUE))
  usr <- par("usr")
  rect(usr[1], usr[3], usr[2], usr[4], col = pal[col.ind],
       border = NA)
  box(col = "lightgray")
  on.exit(par(usr))
  par(usr = c(0, 1, 0, 1))
  r <- formatC(corr, digits = 2, format = "f")
  cex.cor <- .8/strwidth("-X.xx")
  text(0.5, 0.5, r, cex = cex.cor)
}

#########################################################################
## UI
#########################################################################

ui <- shinyUI(dashboardPage(
  dashboardHeader(title = loadingLogo('titleogo.png','logogifopt.gif',height = 55,width = 165)),
  dashboardSidebar(
    sidebarMenu(id = "menu1",
                
                menuItem(text = "Introduction", tabName = "intro"),
                #menuItem(text = "Step by Step Guide", tabName = 'stbyst'),
                conditionalPanel(
                  condition = "input.menu1 == 'stbyst'",
                  radioButtons(inputId = "stage",label = NULL, choices =
                                 c("Stage 1: Data Upload" = "stage1",
                                   "Stage 2: Navigating Plots" = "stage2",
                                   "Stage 3: Download Results" = "stage3"))
                ),
                
                menuItem(text = "Data Upload", tabName = "dataload"),
                menuItem(text = "Box and Density Plots", tabName = "box"),
                menuItem(text = "MeanSD Plot", tabName = "meansd"),
                menuItem(text = "Mean vs Difference", tabName = "meandiff"),
                conditionalPanel(
                  condition = "input.menu1 == 'meandiff'",
                  uiOutput("meandiff1")
                ),
                menuItem(text = "Corrgram",tabName = "corrgram"),
                menuItem(text = "Compare Replicates",tabName = "repvsrep"),
                conditionalPanel(
                  condition = "input.menu1 == 'repvsrep'",
                  uiOutput("repvsrep1") ),
                menuItem(text = "PCA", tabName = "pca"),
                menuItem(text = "Heatmap", tabName = "testsigmoid"),
                menuItem(text = "Linear Model", tabName = "volcano"),
                conditionalPanel(
                  condition = "input.menu1 == 'volcano' & input.modtyp == 'lin'",
                  sliderInput(inputId = "pvalsli", label = "Change Pvalue threshold",min = 0,max = 0.1,value = 0.05),
                  sliderInput(inputId = "avthrssli", label = "Change avfold threshold",min = 0,max = 1,value = 0.2)
                ),
                menuItem(text = "Sigmoidal fit",tabName = "sigfit"),
                menuItem(text = "Summary", tabName = "summary"),
                menuItem(text = "Download", tabName = "download"),
                menuItem(text = "Session Log", tabName = "tst")
                
                
                
    )
  ),
  
  dashboardBody(
    tabItems(
      tabItem(tabName = 'tst',box(htmlOutput("sessionInfo"),width = 12)),
      tabItem(tabName = "testsigmoid",
              box(width = 12, height = 800,
                  plotOutput("plot9",height = 750)
              )),
      
      
      tabItem(tabName = "intro",  includeHTML(path ="introduction.html")),
      # The step by step has been removed from the app but can be re instated by including the menuItem at the start of the UI
      tabItem(tabName = "stbyst",
              conditionalPanel(condition = 'input.stage == "stage1"',
                               tabBox(id = 'stg1tabs', width = 12,
                                      tabPanel(title = "Step 1",
                                               h4("Go to the tab on the sidebar"),
                                               br(),br()
                                               ,HTML('<p><img src="stage1step1.gif" height = 500 /></p>')
                                      ),
                                      tabPanel(title = "Step 2",
                                               h4("Select your data type, please note that intensities will take a few minutes to run."),
                                               br(),HTML('<p><img src="stage1step2.gif" height = 450 /></p>')
                                               
                                      ),
                                      tabPanel(title = "Step 3",
                                               h4("Select the number of channels and replicates."),
                                               br(),
                                               HTML('<p><img src="stage1step3.gif" height = 450 /></p>')
                                      ),
                                      tabPanel(title = "Step 4",
                                               h4("Choose the columns from your data set which indicate the channels you would like to analyse. Note that you can search for these column names by typing in the input box."),
                                               br(),h4("Remember to check that the uploaded column names correspond with the correct standardised name by looking at the table. You can change these positions by dragging and dropping the selected column names in the desired order in the input box."),
                                               br(),HTML('<p><img src="stage1step4.gif" height = 450 /></p>')
                                      ),
                                      tabPanel(title = "Step 5",
                                               h4("(optional depending on input) If you would like to apply a sigmoidal fit and have an adequate amount of data, use the radio button to change the fit and input your concentrations, separating them with a comma
                                                  . Please Note that this may take a few minutes to run"),
                                               br(),HTML('<p><img src="doschedasigmoid.gif" height = 450 /></p>')
                                               ),
                                      tabPanel(title = "Step 6",
                                               h4("(optional depending on input)  If you are using intensities, you required to input the peptide quality score and  sequence."),
                                               br(),HTML('<p><img src="doschedaintensity.gif" height = 450 /></p>')),
                                      tabPanel(title = "Step 7",
                                               h4("Change to one of the plot tabs and you will see the loading sign appear in place of the logo, now cycle through all the tabs.")
                                      )
                                      
                               )),
              conditionalPanel(condition = 'input.stage == "stage2"'
                               ,
                               tabBox(id = 'stg2tabs', width = 12,
                                      tabPanel(title = "Stage 2",
                                               h4(" Cycle through plots, this is done by clicking on the sidebar tabs and the tabs within the main panel.")
                                      ))
                               
              ),
              conditionalPanel(condition = 'input.stage == "stage3"'
                               ,
                               tabBox(id = 'stg3tabs', width = 12,
                                      tabPanel(title = "Download Data",
                                               h4("Go to the Download tab and press the Download Data button to download the processed data in csv format. and use the ‘Download Report’ to download a html file with all your plots with descriptions with them to save your results from the pipeline.")
                                      ),
                                      tabPanel(title = "Download Report",
                                               h4("Go to the Download tab and press the ‘Download Report’ button to download a html file with all your plots with description, allowing you to save your results from the pipeline.")
                                               
                                      )
                                      
                               )
                               
                               
              )),
      # End of the step by step
      
      tabItem(tabName = "dataload",
              box(width = 4,
                  
                  
                  fluidRow(column(5,radioButtons("datype", "Data Type:",
                                                 c("Intensities" = "intensity",
                                                   "Fold Change" = "FC",
                                                   "Log-Fold Change" = "lFC"))),
                           
                           column(5,radioButtons("filetype", "File Type:",
                                                 c(".csv" = "CSV",
                                                   ".txt" = "TXT",
                                                   ".xlsx" = "XLSX")))
                  ),
                  
                  conditionalPanel(condition = 'input.datype == "intensity" & input.modtyp != "sigmoid"',
                                   radioButtons("dorem", "Do removal:",
                                                c("Yes" = "yes",
                                                  "No" = "no"),selected = 'no')
                                   
                  )
                  ,
                  
                  
                  
                  # DATA file upload
                  fileInput('file2', 'Choose file',
                            accept = c(".txt",".csv",".xlsx")),
                  
                  fluidRow(column(5, numericInput("chans","# Channels",value = 4, min = 1)),
                           column(5, numericInput("reps","# Replicates",value = 1,min = 1))
                  ),
                  
                  actionButton("changenames", label = "Change Names"),
                  
                  conditionalPanel(condition = "(input.changenames % 2) == 1",
                                   
                                   uiOutput("setNames")
                                   
                  ),
                  uiOutput("ui_choice"),
                  radioButtons(inputId = "normalize",label = 'Choose Normalization', choices =
                                 c("LOESS" = "loess",
                                   "Median" = "median",
                                   "None" = "none"),
                               selected = 'loess'
                  ),
                  conditionalPanel(condition = 'input.datype == "intensity"',
                                   
                                   uiOutput("ui_sequence"),
                                   uiOutput("ui_qual"),
                                   numericInput('pearsvar',label = "Pearson Variable", value = 0.4,min = -1,max = 1,step = 0.1)
                                   
                                   
                  ),
                  conditionalPanel(condition = 'input.toacc == true || input.datype == "intensity"',
                                   uiOutput("ui_accession")
                                   
                  ),
                  conditionalPanel(condition = 'input.toacc == true & input.datype != "intensity"',
                                   uiOutput("ui_uniqpep")
                                   
                  ),
                  
                  conditionalPanel(condition = "input.modtyp == 'sigmoid'",
                                   checkboxInput('incpd', 'Insert pulldown of pull down', value = FALSE)
                                   
                  ),
                  conditionalPanel(condition = 'input.incpd == true',
                                   uiOutput("ui_pdofpd")
                                   
                  ),
                  conditionalPanel( condition =  "input.datype != 'intensity'",
                                    
                                    checkboxInput("toacc", "Data is NOT Proteome Discoverer 2.1", FALSE)
                  ),
                  
                  checkboxInput('genefile', 'Upload an Accession to Gene ID file', value = FALSE)
                  
                  
                  # uiOutput("ui_sequence"),
                  ## remove column obselete
                  
                  # fluidRow(
                  # column(5,conditionalPanel(
                  #   condition = "input.conf != 0",
                  #   actionButton(inputId = "removechan", label = "Remove Column")
                  # ))),
                  #
                  # conditionalPanel(
                  #   condition = "(input.removechan % 2) == 1",
                  #   uiOutput("remchan")
                  # )
                  
              ),
              box(width = 8,
                  DT::dataTableOutput("test")
              ),
              box(width = 8,
                  conditionalPanel(condition = 'input.chans >= 5 & input.reps == 1',
                                   radioButtons("modtyp", "Fit model:",
                                                c("Sigmoidal" = "sigmoid",
                                                  "Linear" = "lin"
                                                ),selected = "lin")),
                  conditionalPanel(condition = 'input.chans < 5',
                                   h1("Less than 5 channels, only a linear model can be applied")
                  ),
                  conditionalPanel(condition = "input.modtyp == 'sigmoid'",
                                   textInput("concsig", "Enter vector of concentrations from low to high [comma delimited]. Ensure these are not log concentrations"),
                                   textOutput("concsig")
                                   
                                   
                  )
              ),
              
              box(width = 8,
                  selectizeInput( 'organism',label = 'Select your organism:', choice = c('H.sapiens','C. familiaris','D.melanogaster','M. musculus','R. norvegicus',  'S.cerevisiae'), selected =  'H.sapiens'),
                  conditionalPanel(condition = 'input.genefile == true',
                                   
                                   fluidRow(column(5,fileInput('geneF', 'Choose you Accession to Gene ID file',
                                                               accept = c(".txt",".csv",".xlsx"))),
                                            column(5,radioButtons("generadio", "File Type:",
                                                                  c(".csv" = "CSV",
                                                                    ".txt" = "TXT",
                                                                    ".xlsx" = "XLSX"))
                                                   
                                            ))
                  )
              )
      ),
      
      tabItem(tabName = "box",
              
              fluidRow(
                tabBox(id = "tb1", width = 9, height = 700,
                       tabPanel("Box",plotOutput(height = 700, "bar")),
                       tabPanel("Density", plotOutput(height = 700, "plot2")),
                       tabPanel("Venn", plotOutput(height = 700, "venn"))
                       
                       
                ),
                box(width = 3,
                    conditionalPanel(condition = "input.tb1 == 'Venn'",
                                     
                                     checkboxInput(inputId = 'venninput' ,label = 'Include file', value = FALSE)
                    ),
                    conditionalPanel('input.venninput == true',
                                     radioButtons("filetype2", "File Type:",
                                                  c(".csv" = "CSV",
                                                    ".txt" = "TXT",
                                                    ".xlsx" = "XLSX")),
                                     
                                     fileInput(inputId = 'venninp',label = 'Choose input file',
                                               accept = c(".txt",".csv",".xlsx")                                                )
                    )
                )
              )
      ),
      
      tabItem(tabName = "meansd",
              fluidRow(box(width = 9, height = 700, plotOutput(height = 600, "plot3")))),
      tabItem(tabName = "meandiff",
              fluidRow(
                box(width = 9, height = 700, plotOutput(height = 600, "plot6"))
              )),
      tabItem("corrgram", fluidRow(box(width = 9, height = 800, plotOutput(height = 700,"plot5")))
      ),
      tabItem("repvsrep", fluidRow(box(width = 9, height = 800, plotOutput(height = 700,"repvsrep")))),
      
      tabItem(tabName = "pca", fluidRow( box(width = 9, height = 800, plotOutput(height = 700,"plot7")))),
      
      tabItem(tabName = "volcano", fluidRow( tabBox(id = "volplots", width = 9, height = 800,
                                                    tabPanel(title = "P-Value Distribution",plotOutput(height = 700,"plot4")),
                                                    tabPanel(title = "Slope", plotOutput(height = 700,"plot8")),
                                                    tabPanel(title = "Intercept", plotOutput(height = 700,"volcanoint")),
                                                    tabPanel(title = "Quadratic", plotOutput(height = 700,"volcanoquad"))
      ))),
      tabItem(tabName = "sigfit", fluidRow( tabBox(id = "sigplots", width = 10, height = 800,
                                                   tabPanel(title = "Difference Top-Bottom",plotOutput(height = 700,"DiffTopBottom")),
                                                   tabPanel(title = "RB50", plotOutput(height = 700,"RB50")),
                                                   tabPanel(title = "Slope", plotOutput(height = 700,"Slope_pl"))
                                                   
      ))),
      
      
      tabItem(tabName = "summary", fluidRow(
        tabBox(id = "sumtab", width = 8,
               tabPanel("Data p-values",div(DT::dataTableOutput("testmerge",width = '100%'),style = "font-size:90%")),
               tabPanel("Kinases", DT::dataTableOutput("kintab"))
        ),box(title = "Corrgram QC", width = 4,
              infoBoxOutput(outputId = "corrinfo",width = 12)
              
        ),box(title = "P Value QC", width = 4,
              
              conditionalPanel(condition = "input.modtyp == 'sigmoid'",
                               infoBoxOutput("siginfodt",width = 12),
                               infoBoxOutput("siginfoslop",width = 12),
                               infoBoxOutput("siginfodiff",width = 12)
              ),
              
              conditionalPanel(condition = "input.modtyp != 'sigmoid'",
                               infoBoxOutput(outputId = "infopvalslo",width = 12),
                               br(),br(),br(), br(),br(), br(),
                               
                               infoBoxOutput(outputId = "infopvalint",width = 12),
                               br(),br(),br(),  br(),br(), br(),
                               infoBoxOutput(outputId = "infopvalquad",width = 12)
              )
        )
      )),
      tabItem(tabName = "download",
              box(width = 12,
                  textInput("dataset", "Filename for Data", value = "Doscheda"),
                  
                  downloadButton('downloadData', 'Download Data'),
                  
                  downloadButton("report", "Generate report")
                  
                  
                  
              ),
              
              box(width = 12,
                  conditionalPanel(condition = "input.datype == 'intensity'",
                                   actionButton(inputId = 'intcalc',"Calculate Removed Peptides")
                                   
                  ), br(),
                  
                  conditionalPanel(condition = "input.intcalc != 0",
                                   
                                   downloadButton('peprmv', "Download Removed Peptides")
                                   
                  )
              )
              
      )
      
      
      )
)

))

#########################################################
## SERVER
#########################################################

server <- shinyServer(function(input, output) {
  
  options(shiny.maxRequestSize=100*1024^2)
  ##############################################
  
  ## uniprot gene load in any changes to uni prot file will affect this section
  
  uniprotGene <- reactive({
    
    if(input$organism == 'H.sapiens'){
      query = '<query model="genomic" view="Protein.primaryAccession Protein.uniprotAccession Protein.genes.symbol" sortOrder="Protein.primaryAccession ASC" >
      <constraint path="Protein.organism.shortName" op="=" value="H. sapiens" code="A" />
      </query>'
      
      ret=POST('http://www.humanmine.org/humanmine/service/query/results',
               body=list(query=query, format='json'),
               encode='form')
    } else if(input$organism == 'D. melanogaster'){
      
      query = '<query model="genomic" view="Protein.primaryAccession Protein.uniprotAccession Protein.genes.symbol" sortOrder="Protein.primaryAccession ASC" >
      <constraint path="Protein.organism.shortName" op="=" value="D. melanogaster" code="A" />
      </query>'
      
      ret=POST('http://www.flymine.org/flymine/service/query/results',
               body=list(query=query, format='json'),
               encode='form')
      
    }else if(input$organism == 'M. musculus'){
      query = '<query model="genomic" view="Protein.primaryAccession Protein.uniprotAccession Protein.genes.symbol" sortOrder="Protein.primaryAccession ASC" >
      <constraint path="Protein.organism.shortName" op="=" value="M. musculus" code="A" />
      </query>'
      ret = POST('http://www.mousemine.org/mousemine/service/query/results',
                 body=list(query=query, format='json'),
                 encode='form')
    }else if (input$organism == 'R. norvegicus'){
      query = '<query model="genomic" view="Protein.primaryAccession Protein.uniprotAccession Protein.genes.symbol" sortOrder="Protein.primaryAccession ASC" >
      <constraint path="Protein.organism.shortName" op="=" value="R. norvegicus" code="A" />
      </query>'
      
      ret = POST('http://www.ratmine.org/ratmine/service/query/results',
                 body=list(query=query, format='json'),
                 encode='form')
    }else{
      query = '<query model="genomic" view="Protein.primaryAccession Protein.uniprotAccession Protein.genes.symbol" sortOrder="Protein.primaryAccession ASC" >
      <constraint path="Protein.organism.shortName" op="=" value="C. elegans" code="A" />
      </query>'
      
      ret=POST('http://www.humanmine.org/humanmine/service/query/results',
               body=list(query=query, format='json'),
               encode='form')
    }
    
    response = jsonlite::fromJSON(httr::content(ret,as='text'))
    
    data.prots <- response$results[,c(1,3)]
    colnames(data.prots) <- c('Entry','Gene.names')
    as.data.frame(data.prots[,1:2],stringsAsFactors = FALSE)
  })
  
  ## upload gene file
  
  uploadGene <- reactive({
    
    inFile <- input$geneF
    
    if(is.null(inFile)){
      return(NULL)
    }
    if( input$generadio == "TXT"){
      file.rename(inFile$datapath,
                  paste(inFile$datapath, ".txt", sep=""))
      # read.xlsx(paste(inFile$datapath, ".xlsx", sep=""),
      #           sheetIndex = 1, header = TRUE, stringsAsFactors = FALSE)
      conv<- read.delim(paste(inFile$datapath, ".txt", sep=""),
                        header = TRUE,stringsAsFactors = FALSE)
      
    } else if (input$generadio == "XLSX"){
      file.rename(inFile$datapath,
                  paste(inFile$datapath, ".xlsx", sep=""))
      # paste(inFile$datapath, ".xlsx", sep=""))
      # read.xlsx(paste(inFile$datapath, ".xlsx", sep=""),
      #           sheetIndex = 1, header = TRUE, stringsAsFactors = FALSE)
      conv<- read_excel(paste(inFile$datapath, ".xlsx", sep=""),
                        sheet = 1)
      
    } else {
      file.rename(inFile$datapath,
                  paste(inFile$datapath, ".csv", sep=""))
      # paste(inFile$datapath, ".xlsx", sep=""))
      # read.xlsx(paste(inFile$datapath, ".xlsx", sep=""),
      #           sheetIndex = 1, header = TRUE, stringsAsFactors = FALSE)
      conv<- read.csv(paste(inFile$datapath, ".csv", sep=""), header = TRUE, stringsAsFactors = FALSE)
      conv<- conv[,-1]
    }
    
    conv <- conv[,1:2]
    colnames(conv) <- c('Entry', 'Gene.names')
    conv
  })
  
  ## venn diagram intersect file upload
  
  uploadVenn <- reactive({
    
    if(input$venninput == FALSE){
      return(NULL)
    } else{
      inFile <- input$venninp
      
      if(is.null(inFile)){
        return(NULL)
      }
      if( input$filetype2 == "TXT"){
        file.rename(inFile$datapath,
                    paste(inFile$datapath, ".txt", sep=""))
        # read.xlsx(paste(inFile$datapath, ".xlsx", sep=""),
        #           sheetIndex = 1, header = TRUE, stringsAsFactors = FALSE)
        conv<- read.delim(paste(inFile$datapath, ".txt", sep=""),
                          header = TRUE,stringsAsFactors = FALSE)
        
      } else if (input$filetype2 == "XLSX"){
        file.rename(inFile$datapath,
                    paste(inFile$datapath, ".xlsx", sep=""))
        # paste(inFile$datapath, ".xlsx", sep=""))
        # read.xlsx(paste(inFile$datapath, ".xlsx", sep=""),
        #           sheetIndex = 1, header = TRUE, stringsAsFactors = FALSE)
        conv<- read_excel(paste(inFile$datapath, ".xlsx", sep=""),
                          sheet = 1)
        
      } else {
        file.rename(inFile$datapath,
                    paste(inFile$datapath, ".csv", sep=""))
        # paste(inFile$datapath, ".xlsx", sep=""))
        # read.xlsx(paste(inFile$datapath, ".xlsx", sep=""),
        #           sheetIndex = 1, header = TRUE, stringsAsFactors = FALSE)
        conv<- read.csv(paste(inFile$datapath, ".csv", sep=""), header = TRUE, stringsAsFactors = FALSE)
        conv<- conv[,-1]
      }
      
      conv
    }
  })
  
  ### crapome file upload
  
  
  
  crapome<- reactive({
    if(input$organism == 'S.cerevisiae'){
      a <- read.csv('CRAPOME_YEAST',stringsAsFactors = FALSE)
    } else{
      a <- read.csv('CRAPOME_HUMAN',stringsAsFactors = FALSE)
    }
    
    print(head(a))
    a
  })
  
  ### DATA file upload
  
  data <- reactive({
    
    
    inFile <- input$file2
    
    if(is.null(inFile)){
      return(NULL)
    }
    if( input$filetype == "TXT"){
      file.rename(inFile$datapath,
                  paste(inFile$datapath, ".txt", sep=""))
      # read.xlsx(paste(inFile$datapath, ".xlsx", sep=""),
      #           sheetIndex = 1, header = TRUE, stringsAsFactors = FALSE)
      conv<- read.delim(paste(inFile$datapath, ".txt", sep=""),
                        header = TRUE,stringsAsFactors = FALSE)
      
    } else if (input$filetype == "XLSX"){
      file.rename(inFile$datapath,
                  paste(inFile$datapath, ".xlsx", sep=""))
      # paste(inFile$datapath, ".xlsx", sep=""))
      # read.xlsx(paste(inFile$datapath, ".xlsx", sep=""),
      #           sheetIndex = 1, header = TRUE, stringsAsFactors = FALSE)
      conv<- read_excel(paste(inFile$datapath, ".xlsx", sep=""),
                        sheet = 1)
      
    } else {
      file.rename(inFile$datapath,
                  paste(inFile$datapath, ".csv", sep=""))
      # paste(inFile$datapath, ".xlsx", sep=""))
      # read.xlsx(paste(inFile$datapath, ".xlsx", sep=""),
      #           sheetIndex = 1, header = TRUE, stringsAsFactors = FALSE)
      conv<- read.csv(paste(inFile$datapath, ".csv", sep=""), header = TRUE, stringsAsFactors = FALSE)
    }
    
    
    data.frame(conv)
  })
  
  
  ## ui elements
  output$ui_accession<- renderUI({
    
    temp <- data()
    
    ## using selectizeInput with drag_drop and DT
    selectizeInput("accession", "Choose Accession", choices  = colnames(temp) ,
                   selected = NULL,
                   multiple = FALSE,
                   options = list(plugins = list('remove_button')))
  })
  
  output$ui_uniqpep<- renderUI({
    
    temp <- data()
    
    ## using selectizeInput with drag_drop and DT
    selectizeInput("unipeps", "Choose Unique Peptides", choices  = colnames(temp) ,
                   selected = NULL,
                   multiple = FALSE,
                   options = list(plugins = list('remove_button')))
  })
  
  output$ui_pdofpd<- renderUI({
    
    temp <- data()
    
    ## using selectizeInput with drag_drop and DT
    selectizeInput("pdofpd", "Choose Pulldown of pulldown", choices  = colnames(temp) ,
                   selected = NULL,
                   multiple = FALSE,
                   options = list(plugins = list('remove_button')))
    
  })
  
  
  
  output$ui_sequence<- renderUI({
    
    temp <- data()
    
    ## using selectizeInput with drag_drop and DT
    selectizeInput("sequence", "Choose Sequence", choices  = colnames(temp) ,
                   selected = NULL,
                   multiple = FALSE,
                   options = list(plugins = list('remove_button')))
  })
  
  output$ui_choice<- renderUI({
    reqtemp <- data()
    req(reqtemp)
    ## using selectizeInput with drag_drop and DT
    selectizeInput("view_vars", "Select variables to show:", choices  = colNamTot(),
                   selected = colNamSel(),
                   multiple = TRUE,
                   options = list(plugins = list('remove_button', 'drag_drop'), maxItems = nchans()))
  })
  
  
  
  output$ui_qual<- renderUI({
    reqtemp <- data()
    req(reqtemp)
    ## using selectizeInput with drag_drop and DT
    selectizeInput("quality", "Select Peptide Qvality Score:", choices  = colNamTot(),
                   selected = colNamSel(),
                   multiple = FALSE,
                   options = list(plugins = list('remove_button', 'drag_drop'), maxItems = 1))
  })
  
  output$remchan<- renderUI({
    reqtemp <- data()
    req(reqtemp)
    
    selectizeInput(
      'remchan', 'Choose Channels to remove', choices = finalNames(), multiple = TRUE,
      options = list(plugins = list('remove_button'))
    )
    
  })
  
  ## final names setting
  standardNames <- reactive({
    if(input$datype == "intensity"){
      
      out<-   paste("rep",rep(1:input$reps,each = input$chans),"_",
                    rep(paste("C",c("ontrol",0:(input$chans - 2)), sep = ""),input$reps),sep = "")
      
      vals$labelNames = setNames(out, out)
      
    }else{
      out<-  paste("rep",rep(1:input$reps,each = input$chans),"_",
                   rep(paste("C",0:(input$chans - 1), sep = ""),input$reps),sep = "")
      vals$labelNames = setNames(out, out)
      
    }
    
    return(out)
  })
  
  output$setNames <- renderUI({
    
    list(
      h4("Change Names")
      , selectInput("nameToChange", "Standard name"
                    , names(vals$labelNames))
      , textInput("labelToAdd", "Change to")
      , actionButton("makeLabel", "Set label")
    )
    
  })
  
  observeEvent(input$makeLabel, {
    vals$labelNames[input$nameToChange] <- input$labelToAdd
  })
  
  finalNames<- reactive({
    
    
    vals$labelNames
    
    
    
    
  })
  
  
  
  ##############################################
  
  
  
  sigConc <- reactive({
    
    if(input$modtyp == "sigmoid"){
      sort(as.numeric(unlist(strsplit(input$concsig,","))))
    }else{
      return(NULL)
    }
    
  })
  
  
  output$concsig <- renderText({
    
    
    x <- as.numeric(unlist(strsplit(input$concsig,",")))
    if(input$datype== 'intensity'){
      n<- input$chans - 1
    }else{
      
      n <- input$chans*input$reps
    }
    
    if(length(x) < n){
      
      paste0("Not enough concentrations, please put ",n," concentrations")
      
    } else if(length(x) > n){
      
      paste0("Too many concentrations, please put ",n," concentrations")
      
      
    }else{
      x<- sort(x)
      print(c("Concentrations:",x))
    }
    
    
  })
  
  
  
  
  output$selectnames <- renderUI({
    selectizeInput("selectnames", "Change Names", choices = standardNames(),
                   options = list(maxOptions = input$reps * input$chans))
  })
  
  
  
  
  vals <- reactiveValues(
    labelNames = character()
  )
  
  #### LABEL UPLOAD
  
  
  #### data imported and finalNames is vector of colnames ####
  
  rReps <- reactive({
    
    input$reps
    
  })
  
  nchans <- reactive({
    input$reps * input$chans
    
  })
  
  ### probably dont need this
  ### datachange table
  
  
  ### selectize
  
  colNamTot<- reactive({
    reqtemp <- data()
    req(reqtemp)
    a2 <- data()
    colnames(a2)
  })
  
  colNamSel<- reactive({
    a1 <- data()
    a1 <- colnames(a1)
    sample(a1,nchans())
    
  })
  
  
  
  
  
  indexmatrix <- reactive({
    reqtemp <- data()
    req(reqtemp)
    if(input$reps <= 1){
      NULL
    } else {
      if(input$datype == "intensity"){
        channe <- channels()
        reps <- input$reps
        chans <- input$chans - 1
        ser <- finalNames()
        ser<- ser[-seq(1,by = input$chans,length.out = input$reps)]
        
      }else{
        ser <- finalNames()
        channe <- channels()
        reps <- input$reps
        chans <- input$chans
        
      }
      
      combinations <- t(combn(reps,2))
      combmat<- matrix(rep(as.vector(t(combinations)),chans),ncol = 2,byrow = TRUE)
      
      # create factor for repeat ...
      
      name.vec <- 1:(chans*reps)
      repfac <- rep(1:chans,times = reps)
      index <- rep(0:(reps-1),each = chans)
      combfac<- rep(1:(reps),each = chans)
      
      # total combinations  = chans * nrow()
      columnindex <- matrix(0 , ncol = 5 , nrow = chans * nrow(combinations) )
      
      colnames(columnindex) <- c("concentration","rep1","rep2","index1","index2")
      columnindex[,1] <- rep(1:chans ,each = nrow(combinations))
      
      columnindex[,2:3]<- combmat
      
      columnindex
      # create matrix which will be indexed by first 3 columns of column index
      
      index.mat <- matrix(name.vec,ncol = reps)
      
      for(i in 1:nrow(columnindex)){
        
        columnindex[i,4] <- index.mat[columnindex[i,1],columnindex[i,2]]
        columnindex[i,5] <- index.mat[columnindex[i,1],columnindex[i,3]]
        
      }
      
      
      
      
      dadt <- dataMerge()
      
      create.names <- rep("", nrow(columnindex))
      
      
      for( i in 1:nrow(columnindex)){
        create.names[i] <- paste(ser[columnindex[i,4]], "vs", ser[columnindex[i,5]])
      }
      
      final.mat <- data.frame(names = create.names,columnindex)
      final.mat
      final.mat[!is.na(rowSums(matrix(match(columnindex,channe),ncol=5))),]
    }
  })
  
  
  
  selRemCol <- reactive({
    reqtemp <- data()
    req(reqtemp)
    
    a1<- finalNames()
    a1<- as.character(a1)
    
    if(is.null(input$remchan)){
      0
    }else{
      -match(input$remchan,a1)
      
    }
    
  })
  
  channels <- reactive({
    reqtemp <- data()
    req(reqtemp)
    
    if(input$datype == 'intensity'){
      if(input$reps == 1){
        1:(input$chans*input$reps -1)
        
      }else{
        1:(input$chans*input$reps -2)
      }
    }else{
      
      a1 <- selRemCol()
      vec <- 1:nchans()
      if(a1 != 0){
        vec <- vec[selRemCol()]
      }
      vec
    }
  })
  
  
  
  ##### DATA HANDLING #####
  
  ## Intensities
  
  
  intData <- reactive({
    
    if(input$datype == "intensity"){
      
      
      tempdat <- data()
      
      
      # make matrix of descriptions and accessions to filter by common proteins
      
      accDesMat<- as.character(tempdat[as.character(tempdat[,input$accession]) == "",c(input$accession)])
      
      if(input$incpd == TRUE){
        data.merged <- tempdat[,c(input$view_vars, input$accession, input$sequence,input$quality,input$pdofpd)]
        
      }else{
        data.merged <- tempdat[,c(input$view_vars, input$accession, input$sequence,input$quality)]
      }
      
      
      channelnames <- standardNames()
      repindex <- rep(1:input$reps,each = input$chans)
      totfal <- rep(FALSE , (input$chans + 3 ))
      
      if(input$incpd == TRUE){
        
        newdf <- cbind(data.merged[,1:input$chans], data.merged[,c(input$accession, input$sequence,input$quality,input$pdofpd)])
        colnames(newdf) <- c(channelnames[repindex  == 1],"Accession","Sequence", "Quality",'Kd')
        newdf <- newdf[!is.na(rowSums(newdf[,1:input$chans])),]
        newdf <- newdf[newdf$Quality <= 0.05, ]
        newdf <- data.frame(newdf, outliers = rep(0,length(newdf[,1])), uniquePeps = rep(0,length(newdf[,1])), addedVals = rep(0,length(newdf[,1])),Kd = newdf$Kd)
        
        
      }else{
        newdf <- cbind(data.merged[,1:input$chans], data.merged[,c(input$accession, input$sequence,input$quality)])
        colnames(newdf) <- c(channelnames[repindex  == 1],"Accession","Sequence", "Quality")
        newdf <- newdf[!is.na(rowSums(newdf[,1:input$chans])),]
        newdf <- newdf[newdf$Quality <= 0.05, ]
      }
      
      if(input$reps == 2){
        channelnames <- paste("rep",rep(1:input$reps,each = input$chans),"_",
                              rep(paste("C",c("ontrol",0:(input$chans - 2)), sep = ""),input$reps),sep = "")
        newdf2 <- cbind(data.merged[,(input$chans+1):(2*input$chans) ],data.merged[,c(input$accession, input$sequence,input$quality)])
        colnames(newdf2) <- c(channelnames[repindex  == 2],"Accession","Sequence","Quality")
        newdf2 <- newdf2[!is.na(rowSums(newdf2[,1:input$chans])),]
        newdf2 <- newdf2[newdf2$Quality <= 0.05, ]
        
        
        
        newdf <- data.frame(newdf, outliers = rep(0,length(newdf[,1])), uniquePeps = rep(0,length(newdf[,1])), addedVals = rep(0,length(newdf[,1])))
        newdf2 <- data.frame(newdf2, outliers = rep(0,length(newdf2[,1])), uniquePeps = rep(0,length(newdf2[,1])), addedVals = rep(0,length(newdf2[,1])))
        
        
        common.proteins <- intersect(unique(newdf$Accession),unique(newdf2$Accession))
        
        newdf <- newdf[!is.na(match(newdf$Accession,common.proteins)),]
        newdf2 <- newdf2[!is.na(match(newdf2$Accession,common.proteins)),]
      }else{
        common.proteins <- unique(newdf$Accession)
      }
      
      
      
      if(input$dorem == "no"){
        
        if(input$reps == 1){
          if(input$incpd == TRUE){
            prot1 <- unique(newdf$Accession)
            sumkd <- rep(0,length(prot1))
            protdf<- newdf[1:length(prot1),colnames(newdf) != "Sequence"]
            for(i in 1:length(prot1)){
              ## grep for total intensity () includes non unique peps
              protdf[i,1:input$chans] <- apply(newdf[grep(prot1[i],newdf$Accession),1:input$chans],2,sum,na.rm = TRUE)
              protdf$Kd[i] <- sum(newdf$Kd[grep(prot1[i],newdf$Accession)],na.rm = TRUE)
              protdf$Accession[i] <- prot1[i]
              
              ## use == to get unique peptides per protein per repeat
              # protdf$uniquePeps[i] <- length(unique(newdf$Sequence[newdf$Accession == prot1[i]]))
              protdf$uniquePeps[i] <- length(unique(unique(newdf$Sequence[newdf$Accession == prot1[i]])))
              
            }
            
            protdf$uniquePeps[grep(";",protdf$Accession)] <- 0
            
            fc1 <- protdf[,1] / protdf[,2:input$chans]
            
            Kd <- protdf$Kd / protdf[,1]
            
            fcprotdf <- data.frame(log2(fc1),
                                   Accession = protdf$Accession,uniquePepr1 = protdf$uniquePeps,
                                   uniquePepr2 =protdf$uniquePeps, Kd = Kd)
            fcprotdf<- fcprotdf[!is.na(rowSums(fcprotdf[1:(input$chans - 1 )])),]
            fcprotdf
            
          }else{
            
            prot1 <- unique(newdf$Accession)
            protdf<- newdf[1:length(prot1),colnames(newdf) != "Sequence"]
            
            for(i in 1:length(prot1)){
              ## grep for total intensity () includes non unique peps
              protdf[i,1:input$chans] <- apply(newdf[grep(prot1[i],newdf$Accession),1:input$chans],2,sum,na.rm = TRUE)
              protdf$Accession[i] <- prot1[i]
              
              ## use == to get unique peptides per protein per repeat
              # protdf$uniquePeps[i] <- length(unique(newdf$Sequence[newdf$Accession == prot1[i]]))
              protdf$uniquePeps[i] <- length(unique(unique(newdf$Sequence[newdf$Accession == prot1[i]])))
              
            }
            
            protdf$uniquePeps[grep(";",protdf$Accession)] <- 0
            
            fc1 <- protdf[,1] / protdf[,2:input$chans]
            
            
            fcprotdf <- data.frame(log2(fc1),
                                   Accession = protdf$Accession,uniquePepr1 = protdf$uniquePeps,
                                   uniquePepr2 =protdf$uniquePeps)
            fcprotdf<- fcprotdf[!is.na(rowSums(fcprotdf[1:(input$chans - 1 )])),]
            fcprotdf
            
          }
          
          
        }else{
          prot1 <- unique(newdf$Accession)
          protdf<- newdf[1:length(prot1),colnames(newdf) != "Sequence"]
          
          
          for(i in 1:length(prot1)){
            ## grep for total intensity () includes non unique peps
            protdf[i,1:input$chans] <- apply(newdf[grep(prot1[i],newdf$Accession),1:input$chans],2,sum,na.rm = TRUE)
            
            protdf$Accession[i] <- prot1[i]
            
            ## use == to get unique peptides per protein per repeat
            # protdf$uniquePeps[i] <- length(unique(newdf$Sequence[newdf$Accession == prot1[i]]))
            protdf$uniquePeps[i] <- length(unique(c(unique(newdf$Sequence[newdf$Accession == prot1[i]]),unique(newdf2$Sequence[newdf2$Accession == prot1[i]]))))
            
          }
          
          protdf$uniquePeps[grep(";",protdf$Accession)] <- 0
          
          
          prot2 <- unique(newdf2$Accession)
          ### second data frame
          
          protdf2<- newdf2[1:length(prot2),colnames(newdf2) != "Sequence"]
          
          for(i in 1:length(prot2)){
            
            ## grep for total intensity () includes non unique peps
            protdf2[i,1:input$chans] <- apply(newdf2[grep(prot2[i],newdf2$Accession),1:input$chans],2,median,na.rm = TRUE)
            protdf2$Accession[i] <- prot2[i]
            
            ## use == to get unique peptides per protein per repeat
            protdf2$uniquePeps[i] <- length(unique(newdf2$Sequence[newdf2$Accession == prot2[i]]))
          }
          
          protdf2$uniquePeps[grep(";",protdf2$Accession)] <- 0
          
          
          com.prot <- intersect(protdf$Accession,protdf2$Accession)
          
          fc1 <- protdf[,1] / protdf[,2:input$chans]
          fc2 <-  protdf2[,1] / protdf2[,2:input$chans]
          
          
          fcprotdf <- data.frame(log2(fc1[match(com.prot,protdf$Accession),]),
                                 log2(fc2[match(com.prot,protdf2$Accession),]),
                                 Accession = com.prot,uniquePepr1 = protdf$uniquePeps[match(com.prot,protdf$Accession)],
                                 uniquePepr2 =protdf2$uniquePeps[match(com.prot,protdf2$Accession)])
          fcprotdf<- fcprotdf[!is.na(rowSums(fcprotdf[1:(input$reps*input$chans -2 )])),]
          fcprotdf
        }
        
        
      }else{
        
        totpepdf <- NULL
        totpepdf2 <- NULL
        
        for (z in 1:length(common.proteins)){
          temp <- newdf[newdf$Accession == common.proteins[z],]
          temp2 <- newdf2[newdf2$Accession == common.proteins[z],]
          # first step: check if all peptides are unique ...
          
          if(all.equal(grep(";",temp$Accession),integer(0)) == TRUE){
            
            uniPeptides1 <- length(unique(temp$Sequence))
            
          }  else {
            uniPeptides1 <- length(unique(temp$Sequence[-grep(";",temp$Accession)]))
          }
          
          if(all.equal(grep(";",temp2$Accession),integer(0)) == TRUE){
            
            uniPeptides2 <- length(unique(temp2$Sequence))
            
          }else{
            
            uniPeptides2 <- length(unique(temp2[-grep(";",temp2$Accession)]))
          }
          
          ## add unique peptide column
          
          temp$uniquePeps <- uniPeptides1
          temp2$uniquePeps <- uniPeptides2
          
          
          tempPep <- intersect(unique(temp$Sequence),unique(temp2$Sequence))
          
          
          if(all.equal(tempPep, character(0)) == TRUE){
            next
          }
          
          for(i in 1:length(tempPep)){
            
            if(sum(temp$Sequence == tempPep[i]) != sum(temp2$Sequence == tempPep[i])){
              
              dr <- peptide.match(temp[temp$Sequence == tempPep[i],],temp2[temp2$Sequence == tempPep[i],],input$chans)
              dr1 <- dr$dr1
              dr2 <- dr$dr2
              
            } else {
              
              dr1 <- temp[temp$Sequence == tempPep[i],]
              dr2 <- temp2[temp2$Sequence == tempPep[i],]
              
              
            }
            
            tempoindex <- rep(FALSE,nrow(dr1))
            for(j in 1:nrow(dr1)){
              percor <- cor.test(log2(as.numeric(dr1[j,1:input$chans])),log2(as.numeric(dr2[j,1:input$chans])))
              tempoindex[j] <- percor$estimate < input$pearsvar
            }
            
            dr1[tempoindex,1:input$chans] <- NA
            dr2[tempoindex,1:input$chans] <- NA
            
            
            
            tempReplace <- dr1
            tempReplace2 <- dr2
            
            
            
            temp <- temp[temp$Sequence != tempPep[i],]
            temp <- rbind(temp,tempReplace)
            
            temp2 <- temp2[temp2$Sequence != tempPep[i],]
            temp2 <- rbind(temp2,tempReplace2)
            
          }
          
          temp<- temp[match(tempPep,temp$Sequence),]
          temp2<- temp2[match(tempPep,temp2$Sequence),]
          
          # newdf <- newdf[newdf$Accession != common.proteins[z],]
          # newdf<- rbind(newdf,temp)
          totpepdf <- rbind(totpepdf,temp)
          
          # newdf2 <- newdf2[newdf2$Accession != common.proteins[z],]
          # newdf2<- rbind(newdf2,temp2)
          totpepdf2 <- rbind(totpepdf2,temp2)
        }
        
        
        
        
        totpepdf<- totpepdf[!is.na(rowSums(totpepdf[,1:input$chans])),]
        totpepdf2<- totpepdf2[!is.na(rowSums(totpepdf2[,1:input$chans])),]
        
        totpepdf<- totpepdf[totpepdf$addedVals == 0, ]
        totpepdf<- totpepdf[totpepdf$addedVals == 0, ]
        
        
        totpepdf$uniquePeps[grep(';',totpepdf$Accession)] <- 0
        
        
        ### take sums
        
        pepframe<- data.frame(totpepdf[1:length(common.proteins),1:input$chans],totpepdf2[1:length(common.proteins),1:input$chans],
                              Accession = totpepdf$Accession[1:length(common.proteins)], uniquePeps = totpepdf$uniquePeps[1:length(common.proteins)])
        
        pepsum1 <- pepsum2 <- totpepdf[1:length(common.proteins),]
        pepsum1 <- pepsum1[,-match(c("Sequence","addedVals", "Quality","outliers"),colnames(pepsum1))]
        pepsum2 <- pepsum2[,-match(c("Sequence","addedVals", "Quality","outliers"),colnames(pepsum2))]
        
        pepsum1$pepNum <- pepsum1$pepNum <- rep(0,length(common.proteins))
        
        
        colnames(pepsum2)[1:input$chans]<- channelnames[(input$chans+1):(input$chans*input$reps)]
        
        for(i in 1:length(common.proteins)){
          pepsum1[i,1:input$chans] <- colSums(totpepdf[grep(common.proteins[i],totpepdf$Accession),1:input$chans])
          pepsum2[i,1:input$chans] <- colSums(totpepdf2[grep(common.proteins[i],totpepdf2$Accession),1:input$chans])
          
          pepsum1$pepNum[i] <- nrow(totpepdf[grep(common.proteins[i],totpepdf$Accession),1:input$chans])
          pepsum2$pepNum[i] <- nrow(totpepdf2[grep(common.proteins[i],totpepdf2$Accession),1:input$chans])
          
          
          pepsum1$Accession[i]<- pepsum2$Accession[i] <- common.proteins[i]
          pepsum1$uniquePeps[i]<- totpepdf$uniquePeps[as.logical(match(totpepdf$Accession,common.proteins[i],nomatch = FALSE))][1]
          
          
          
          
          
          #   pepframe[i, 1:input$chans] <- apply( totpepdf[totpepdf$Accession == common.proteins[i], 1:input$chans],2, sum)
          # pepframe[i, (input$chans+1):(input$chans*input$reps)] <- apply( totpepdf2[totpepdf2$Accession == common.proteins[i], 1:input$chans],2, sum)
          #
          # pepframe$Accession <- common.proteins[i]
          # pepframe$uniquePeps <- totpepdf$uniquePeps[totpepdf$Accession == common.proteins[i]][1]
        }
        
        indexpepsum <- ((rowSums(pepsum1[1:input$chans]) != 0) + ((rowSums(pepsum2[1:input$chans])) != 0)) == 2
        pepsum1<- pepsum1[indexpepsum, ]
        pepsum2<- pepsum2[indexpepsum, ]
        
        # indpepsum2 <- pepsum1$pepNum > 1 | pepsum2$pepNum > 1
        # pepsum1 <- pepsum1[indpepsum2,]
        # pepsum2 <- pepsum1[indpepsum2,]
        
        
        fc1 <- pepsum1[,1] / pepsum1[,2:input$chans]
        fc2 <- pepsum2[,1] / pepsum2[,2:input$chans]
        
        
        fcprotdf <- data.frame(log2(fc1),log2(fc2),pepsum1$Accession,uniquePepr1 = pepsum1$uniquePeps,
                               uniquePepr2 = pepsum2$uniquePeps,num1 =  pepsum1$pepNum, num2 = pepsum2$pepNum )
        
        
        fcprotdf
        
      }
      fcprotdf
      
    }else{
      return(NULL)
    }
    
    
  })
  
  ######################################################### isolate removed peptides
  
  pepdwn <- reactive({
    
    if(input$intcalc == 0){
      return(NULL)
    }else{
      
      
      tempdat <- data()
      
      
      # make matrix of descriptions and accessions to filter by common proteins
      
      accDesMat<- as.character(tempdat[as.character(tempdat[,input$accession]) == "",c(input$accession)])
      
      data.merged <- tempdat[,c(input$view_vars, input$accession, input$sequence,input$quality)]
      
      
      channelnames <- standardNames()
      repindex <- rep(1:input$reps,each = input$chans)
      totfal <- rep(FALSE , (input$chans + 3 ))
      
      
      newdf <- cbind(data.merged[,1:input$chans], data.merged[,c(input$accession, input$sequence,input$quality)])
      colnames(newdf) <- c(channelnames[repindex  == 1],"Accession","Sequence", "Quality")
      newdf <- newdf[!is.na(rowSums(newdf[,1:input$chans])),]
      newdf <- newdf[newdf$Quality <= 0.05, ]
      
      
      
      newdf2 <- cbind(data.merged[,(input$chans+1):(2*input$chans) ],data.merged[,c(input$accession, input$sequence,input$quality)])
      colnames(newdf2) <- c(channelnames[repindex  == 2],"Accession","Sequence","Quality")
      newdf2 <- newdf2[!is.na(rowSums(newdf2[,1:input$chans])),]
      newdf2 <- newdf2[newdf2$Quality <= 0.05, ]
      
      
      
      newdf <- data.frame(newdf, outliers = rep(0,length(newdf[,1])), uniquePeps = rep(0,length(newdf[,1])), addedVals = rep(0,length(newdf[,1])))
      newdf2 <- data.frame(newdf2, outliers = rep(0,length(newdf2[,1])), uniquePeps = rep(0,length(newdf2[,1])), addedVals = rep(0,length(newdf2[,1])))
      
      
      common.proteins <- intersect(unique(newdf$Accession),unique(newdf2$Accession))
      
      newdf <- newdf[!is.na(match(newdf$Accession,common.proteins)),]
      newdf2 <- newdf2[!is.na(match(newdf2$Accession,common.proteins)),]
      
      
      
      totpepdf <- NULL
      totpepdf2 <- NULL
      
      for (z in 1:length(common.proteins)){
        temp <- newdf[newdf$Accession == common.proteins[z],]
        temp2 <- newdf2[newdf2$Accession == common.proteins[z],]
        # first step: check if all peptides are unique ...
        
        if(all.equal(grep(";",temp$Accession),integer(0)) == TRUE){
          
          uniPeptides1 <- length(unique(temp$Sequence))
          
        }  else {
          uniPeptides1 <- length(unique(temp$Sequence[-grep(";",temp$Accession)]))
        }
        
        if(all.equal(grep(";",temp2$Accession),integer(0)) == TRUE){
          
          uniPeptides2 <- length(unique(temp2$Sequence))
          
        }else{
          
          uniPeptides2 <- length(unique(temp2[-grep(";",temp2$Accession)]))
        }
        
        ## add unique peptide column
        
        temp$uniquePeps <- uniPeptides1
        temp2$uniquePeps <- uniPeptides2
        
        
        tempPep <- intersect(unique(temp$Sequence),unique(temp2$Sequence))
        
        
        if(all.equal(tempPep, character(0)) == TRUE){
          next
        }
        
        for(i in 1:length(tempPep)){
          
          if(sum(temp$Sequence == tempPep[i]) != sum(temp2$Sequence == tempPep[i])){
            
            dr <- peptide.match(temp[temp$Sequence == tempPep[i],],temp2[temp2$Sequence == tempPep[i],],input$chans)
            dr1 <- dr$dr1
            dr2 <- dr$dr2
            
          } else {
            
            dr1 <- temp[temp$Sequence == tempPep[i],]
            dr2 <- temp2[temp2$Sequence == tempPep[i],]
            
            
          }
          
          tempoindex <- rep(FALSE,nrow(dr1))
          for(j in 1:nrow(dr1)){
            percor <- cor.test(log2(as.numeric(dr1[j,1:input$chans])),log2(as.numeric(dr2[j,1:input$chans])))
            tempoindex[j] <- percor$estimate < input$pearsvar
          }
          
          dr1[tempoindex,1:input$chans] <- NA
          dr2[tempoindex,1:input$chans] <- NA
          
          
          
          tempReplace <- dr1
          tempReplace2 <- dr2
          
          
          
          temp <- temp[temp$Sequence != tempPep[i],]
          temp <- rbind(temp,tempReplace)
          
          temp2 <- temp2[temp2$Sequence != tempPep[i],]
          temp2 <- rbind(temp2,tempReplace2)
          
        }
        
        temp<- temp[match(tempPep,temp$Sequence),]
        temp2<- temp2[match(tempPep,temp2$Sequence),]
        
        # newdf <- newdf[newdf$Accession != common.proteins[z],]
        # newdf<- rbind(newdf,temp)
        totpepdf <- rbind(totpepdf,temp)
        
        # newdf2 <- newdf2[newdf2$Accession != common.proteins[z],]
        # newdf2<- rbind(newdf2,temp2)
        totpepdf2 <- rbind(totpepdf2,temp2)
      }
      
      
      
      
      totpepdf<- totpepdf[!is.na(rowSums(totpepdf[,1:input$chans])),]
      totpepdf2<- totpepdf2[!is.na(rowSums(totpepdf2[,1:input$chans])),]
      
      totpepdf<- totpepdf[totpepdf$addedVals == 0, ]
      totpepdf<- totpepdf[totpepdf$addedVals == 0, ]
      
      
      totpepdf$uniquePeps[grep(';',totpepdf$Accession)] <- 0
      
      
      ### take sums
      
      pepframe<- data.frame(totpepdf[1:length(common.proteins),1:input$chans],totpepdf2[1:length(common.proteins),1:input$chans],
                            Accession = totpepdf$Accession[1:length(common.proteins)], uniquePeps = totpepdf$uniquePeps[1:length(common.proteins)])
      
      pepsum1 <- pepsum2 <- totpepdf[1:length(common.proteins),]
      pepsum1 <- pepsum1[,-match(c("Sequence","addedVals", "Quality","outliers"),colnames(pepsum1))]
      pepsum2 <- pepsum2[,-match(c("Sequence","addedVals", "Quality","outliers"),colnames(pepsum2))]
      
      pepsum1$pepNum <- pepsum1$pepNum <- rep(0,length(common.proteins))
      
      
      colnames(pepsum2)[1:input$chans]<- channelnames[(input$chans+1):(input$chans*input$reps)]
      
      for(i in 1:length(common.proteins)){
        pepsum1[i,1:input$chans] <- colSums(totpepdf[grep(common.proteins[i],totpepdf$Accession),1:input$chans])
        pepsum2[i,1:input$chans] <- colSums(totpepdf2[grep(common.proteins[i],totpepdf2$Accession),1:input$chans])
        
        pepsum1$pepNum[i] <- nrow(totpepdf[grep(common.proteins[i],totpepdf$Accession),1:input$chans])
        pepsum2$pepNum[i] <- nrow(totpepdf2[grep(common.proteins[i],totpepdf2$Accession),1:input$chans])
        
        
        pepsum1$Accession[i]<- pepsum2$Accession[i] <- common.proteins[i]
        pepsum1$uniquePeps[i]<- totpepdf$uniquePeps[as.logical(match(totpepdf$Accession,common.proteins[i],nomatch = FALSE))][1]
        
      }
      
      indexpepsum <- ((rowSums(pepsum1[1:input$chans]) != 0) + ((rowSums(pepsum2[1:input$chans])) != 0)) == 2
      pepsum1<- pepsum1[indexpepsum, ]
      pepsum2<- pepsum2[indexpepsum, ]
      
      end <- -row.match(newdf[,1:(input$chans+2)],totpepdf[,1:(input$chans+2)])
      end2 <- -row.match(newdf2[,1:(input$chans+2)],totpepdf2[,1:(input$chans+2)])
      
      rempep <- newdf[end,]
      rempep2 <- newdf2[end2,]
      colnames(rempep)<- paste("r1_",colnames(rempep),sep = '')
      colnames(rempep2)<- paste("r2_",colnames(rempep2),sep = '')
      
      
      
      if(nrow(rempep) > nrow(rempep2)){
        
        finalrempep <- rempep
        finalrempep[] <- NA
        finalrempep[1:nrow(rempep2),]<- rempep2
        finalrempep<- cbind(rempep,finalrempep)
      }else{
        finalrempep <- rempep2
        finalrempep[] <- NA
        finalrempep[1:nrow(rempep),] <- rempep
        finalrempep <- cbind(finalrempep,rempep2)
      }
      colnames(finalrempep)<- c(paste("r1_",colnames(rempep),sep = ''),paste("r2_",colnames(rempep2),sep = ''))
      finalrempep
      
    }
    
  })
  
  ## log fold changes
  
  
  dataMerge <- reactive({
    # testingkd <- rKd()
    # print(head(testingkd))
    inten <- intData()
    
    if(input$datype != "intensity"){
      
      if(input$modtyp == "sigmoid"){
        
        data_orig2 <- data()
        
        ## if user has specified accession & Description
        if(input$toacc == FALSE){
          pattern<-"GN=(\\S+)"
          g_fromD1<-str_extract(data_orig2$Description,pattern)
          gID_D1a<-str_split_fixed(g_fromD1,"GN=",n=2)
          gID_D1a<-as.vector(gID_D1a[,2])
          gID_D1<-as.matrix(replace(gID_D1a,gID_D1a=="","NA"))
          #Addition of the gene ID column
          data_orig2["geneID"]<- (gID_D1)
        }else{
          if(input$genefile == FALSE){
            tempacc <- data_orig2[,input$accession]
            data_orig2 <- data_orig2[,(-input$accession)]
            data_orig2$Accession <- tempacc
            uniGene <- uniprotGene()
            #uniGene$Gene.names <- gsub(' .*','',uniGene$Gene.names)
            uniGene$Gene.names[uniGene$Gene.names == '']<- NA
            GeneID <- uniGene$Gene.names[match(data_orig2$Accession,uniGene$Entry)]
            GeneID <- make.names(GeneID,unique = TRUE)
            
            data_orig2$geneID <- GeneID
          }else{
            
            tempacc <- data_orig2[,input$accession]
            data_orig2 <- data_orig2[,(-input$accession)]
            data_orig2$Accession <- tempacc
            
            uniGene <- uploadGene()
            GeneID <- uniGene$Gene.names[match(data_orig2$Accession,uniGene$Entry)]
            GeneID <- make.names(GeneID,unique = TRUE)
            
            data_orig2$geneID <- GeneID
            data_orig2<-na.omit(data_orig2)
          }
        }
        
        if(input$incpd == TRUE){
          
          if(input$toacc == FALSE){
            data.merged<-data.frame(data_orig2[,input$view_vars],
                                    
                                    data_orig2$Accession, data_orig2$geneID,
                                    data_orig2$X..Unique.Peptides,data_orig2[,input$pdofpd])
          }else{
            data.merged<-data.frame(data_orig2[,input$view_vars],
                                    
                                    data_orig2$Accession, data_orig2$geneID,
                                    data_orig2[,input$unipeps],data_orig2[,input$pdofpd])
          }
          final.Names <- finalNames()
          colnames(data.merged)<- c(final.Names,
                                    "Accession", "GeneID","UniquePeps",'Kd')
          
          
          tmp<-data.merged[,1:input$chans]
          tf <- as.data.frame(lapply(tmp, function(x) (is.na(x))))
          countsNAs<-as.data.frame(apply(tf,1,function(x)table(x)["TRUE"]))
          n_of_miss<-as.data.frame(as.numeric(str_replace_all(as.list(countsNAs[,1]),"NA",'0')))
          data.merged <- data.frame(data.merged,n_of_miss)
          colnames(data.merged)<-c( final.Names,
                                    "Accession", "GeneID","UniquePeps",'Kd', "MissingVal")
          #
          missing_val <- 0
          #
          data.merged<- as.data.frame(data.merged[data.merged$MissingVal <= missing_val, ])
          data.merged<-na.omit(data.merged)
          #
          # #Specify the number of missing points.For zero missing point  is ==0
          #
          # #filiter for 2 unique peptides
          data.merged <- data.merged[data.merged$UniquePeps > 1, ]
          data.merged<-na.omit(data.merged)
          
          #
          #
          if(input$normalize == 'loess' ){
            data.merged <- data.frame(log2(normalize.loess(2^(data.merged[,channels()]))),
                                      Accession=data.merged$Accession,
                                      GeneID=data.merged$GeneID,
                                      UniquePeps=data.merged$UniquePeps,
                                      Kd = 1 / data.merged$Kd,
                                      MissingVal=data.merged$MissingVal)
            
          }else if(input$normalize == 'median'){
            
             data.merged <- data.frame(log2( sweep( (2^(data.merged[,channels()]) ) ,
                                                   MARGIN = 2,
                                                   as.numeric(apply((2^(data.merged[,channels()])),2,median)),
                                                   FUN = "/")
                                            ),
                                      Accession=data.merged$Accession,
                                      GeneID=data.merged$GeneID,
                                      UniquePeps=data.merged$UniquePeps,
                                      Kd = 1 / data.merged$Kd,
                                      MissingVal=data.merged$MissingVal)
          }else{
            data.merged <- data.frame(((2^(data.merged[,channels()]))),
                                      Accession=data.merged$Accession,
                                      GeneID=data.merged$GeneID,
                                      UniquePeps=data.merged$UniquePeps,
                                      Kd = 1 / data.merged$Kd,
                                      MissingVal=data.merged$MissingVal)
          }
          
          data.merged<-na.omit(data.merged)
          
          data.merged
          
        } else {
          if(input$toacc == FALSE){
            data.merged<-data.frame(data_orig2[,input$view_vars],
                                    
                                    data_orig2$Accession, data_orig2$geneID,
                                    data_orig2$X..Unique.Peptides)
            
          }else{
            data.merged<-data.frame(data_orig2[,input$view_vars],
                                    
                                    data_orig2$Accession, data_orig2$geneID,
                                    data_orig2[,input$unipeps])
          }
          final.Names <- finalNames()
          
          colnames(data.merged)<- c(final.Names,
                                    "Accession", "GeneID","UniquePeps")
          
          
          tmp<-data.merged[,1:input$chans]
          tf <- as.data.frame(lapply(tmp, function(x) (is.na(x))))
          countsNAs<-as.data.frame(apply(tf,1,function(x)table(x)["TRUE"]))
          n_of_miss<-as.data.frame(as.numeric(str_replace_all(as.list(countsNAs[,1]),"NA",'0')))
          data.merged <- data.frame(data.merged,n_of_miss)
          colnames(data.merged)<-c( final.Names,
                                    "Accession", "GeneID","UniquePeps","MissingVal")
          #
          missing_val <- 0
          #
          data.merged<- as.data.frame(data.merged[data.merged$MissingVal <= missing_val, ])
          #
          # #Specify the number of missing points.For zero missing point  is ==0
          #
          # #filiter for 2 unique peptides
          data.merged <- data.merged[data.merged$UniquePeps > 1, ]
          
          #
          #
          if(input$normalize == 'loess'){
            data.merged <- data.frame(log2(normalize.loess(2^(data.merged[,channels()]))),
                                      Accession=data.merged$Accession,
                                      GeneID=data.merged$GeneID,
                                      UniquePeps=data.merged$UniquePeps,
                                      MissingVal=data.merged$MissingVal)
            
          }else if (input$normalize == 'median'){
            
            
            data.merged <- data.frame(log2( sweep( (2^(data.merged[,channels()]) ) ,
                                                   MARGIN = 2,
                                                   as.numeric(apply((2^(data.merged[,channels()])),2,median)),
                                                   FUN = "/")
                                              ),
                                      Accession=data.merged$Accession,
                                      GeneID=data.merged$GeneID,
                                      UniquePeps=data.merged$UniquePeps,
                                      MissingVal=data.merged$MissingVal)
          }else{
            data.merged <- data.frame(log2(2^(data.merged[,channels()])),
                                      Accession=data.merged$Accession,
                                      GeneID=data.merged$GeneID,
                                      UniquePeps=data.merged$UniquePeps,
                                      MissingVal=data.merged$MissingVal)
          }
          data.merged<-na.omit(data.merged)
          
          data.merged
        }
        
      } else {
        tempdat <- data()
        temp<- channels()
        nvec <- length(temp)
        
        data.merged <- tempdat[,input$view_vars]
        colnames(data.merged) <- finalNames()
        
        data.names<- c(input$view_vars,"Accession", "GeneID","UniquePeps","MissingVal")
        
        if(input$datype == "FC"){
          data.merged[,temp] <- log2(data.merged[,temp])
        }
        #tidy below !!
        
        if(input$toacc == FALSE){
          
          
          pattern<-"GN=(\\S+)"
          g_fromD1<-str_extract(tempdat$Description,pattern)
          gID_D1a<-str_split_fixed(g_fromD1,"GN=",n=2)
          gID_D1a<-as.vector(gID_D1a[,2])
          gID_D1<-as.matrix(replace(gID_D1a,gID_D1a=="","NA"))
          
          Accession <- tempdat$Accession
          UniquePeps <- MissingVal<- tempdat[,grep("Unique",colnames(tempdat))]
          data.merged <- cbind(data.merged,Accession, GeneID = gID_D1,UniquePeps,MissingVal)
          data.merged<-na.omit(data.merged)
          
        } else {
          
          tempdat$Accession <- tempdat[,input$accession]
          if(input$genefile == FALSE){
            
            uniGene <- uniprotGene()
            # uniGene<- as.data.frame(uniGene,stringsAsFactors = FALSE)
            #uniGene$Gene.names <- gsub(' .*','',uniGene$Gene.names)
            print(head(uniGene))
          } else{
            uniGene <- uploadGene()
            colnames(uniGene)[1:2] <- c('Entry','Gene.names')
          }
          uniGene$Gene.names[uniGene$Gene.names == '']<- NA
          GeneID <- uniGene$Gene.names[match(tempdat$Accession,uniGene$Entry)]
          GeneID <- make.names(GeneID,unique = TRUE)
          print(GeneID)
          
          Accession <- tempdat$Accession
          UniquePeps <- MissingVal<- tempdat[,input$unipeps]
          
          # data_orig2$geneID <- GeneID
          data.merged <- cbind(data.merged,Accession, GeneID = GeneID,UniquePeps,MissingVal)
          data.merged<-na.omit(data.merged)
          
          print(head(data.merged))
        }
        
        
        
        missing<- rowSums(is.na(data.merged[,channels()]))
        
        missing_val <- 0
        data.merged$MissingVal <- missing
        
        ## subset by missing
        data.merged <- data.merged[data.merged$MissingVal <= missing_val, ]
        data.merged<- as.data.frame(data.merged[data.merged$MissingVal <= missing_val, ])
        
        data.merged <- data.merged[data.merged$UniquePeps > 1, ]
        data.merged<-na.omit(data.merged)
        
        #
        #
        if(input$normalize == 'loess'){
          data.merged <- data.frame(log2(normalize.loess(2^(data.merged[,channels()]))),
                                    Accession=data.merged$Accession,
                                    GeneID=data.merged$GeneID,
                                    UniquePeps=data.merged$UniquePeps,
                                    MissingVal=data.merged$MissingVal)
          
        }else if(input$normalize == 'median'){

          data.merged <- data.frame(log2( sweep( (2^(data.merged[,channels()]) ) ,
                                                   MARGIN = 2,
                                                   as.numeric(apply((2^(data.merged[,channels()])),2,median)),
                                                   FUN = "/")
                                           ),
                                    Accession=data.merged$Accession,
                                    GeneID=data.merged$GeneID,
                                    UniquePeps=data.merged$UniquePeps,
                                    MissingVal=data.merged$MissingVal)
        }else{
          data.merged <- data.frame(log2((2^(data.merged[,channels()]))),
                                    Accession=data.merged$Accession,
                                    GeneID=data.merged$GeneID,
                                    UniquePeps=data.merged$UniquePeps,
                                    MissingVal=data.merged$MissingVal)
        }
        data.merged<-na.omit(data.merged)
        
        data.merged
        ## filter for 2 unique peptide
      }
      
    } else {
      
      ### intensities to protein done.. here no description so we need toi use accession and intermine
      
      tempdat <- inten
      
      if(input$genefile == FALSE){
        
        uniGene <- uniprotGene()
        #uniGene$Gene.names <- gsub(' .*','',uniGene$Gene.names)
      }else{
        uniGene <- uploadGene()
        colnames(uniGene) <- c('Entry','Gene.names')
      }
      
      if(input$dorem =='yes'){
        
        Accession <- tempdat$pepsum1.Accession
      }else{
        Accession <- tempdat$Accession
      }
      uniGene$Gene.names[uniGene$Gene.names == '']<- NA
      GeneID <- uniGene$Gene.names[match(Accession,uniGene$Entry)]
      GeneID <- make.names(GeneID,unique = TRUE)
      
      tempdat$GeneID <- GeneID
      
      UniquePeps <- tempdat$uniquePepr1
      
      if(input$reps == 1){
        
        data.merged <- tempdat
        final.Names <- paste0('rep1_C',0:(input$chans - 2))
        if(input$incpd == TRUE){
          
          data.merged <- data.frame(data.merged[,1:(input$chans -1 )], Accession = data.merged$Accession,
                                    GeneID = data.merged$GeneID, UniquePeps = data.merged$uniquePepr1, Kd = data.merged$Kd)
          colnames(data.merged)<- c(final.Names,
                                    "Accession", "GeneID","UniquePeps", 'Kd')
          
          tmp<-data.merged[,1:(input$chans -1 )]
          tf <- as.data.frame(lapply(tmp, function(x) (is.na(x))))
          countsNAs<-as.data.frame(apply(tf,1,function(x)table(x)["TRUE"]))
          n_of_miss<-as.data.frame(as.numeric(str_replace_all(as.list(countsNAs[,1]),"NA",'0')))
          data.merged <- data.frame(data.merged,n_of_miss)
          colnames(data.merged)<-c( final.Names,
                                    "Accession", "GeneID","UniquePeps",'Kd',"MissingVal")
          #
          missing_val <- 0
          #
          data.merged<- as.data.frame(data.merged[data.merged$MissingVal <= missing_val, ])
          #
          # #Specify the number of missing points.For zero missing point  is ==0
          #
          # #filiter for 2 unique peptides
          data.merged <- data.merged[data.merged$UniquePeps > 1, ]
          #
          #
          if(input$normalize == 'loess'){
            data.merged <- data.frame(log2(normalize.loess(2^(data.merged[,1:(input$chans -1)]))),
                                      Accession=data.merged$Accession,
                                      GeneID=data.merged$GeneID,
                                      UniquePeps=data.merged$UniquePeps,
                                      Kd = data.merged$Kd
            )
          }else if(input$normalize == 'median'){
      
           data.merged <- data.frame(log2( sweep( (2^(data.merged[,1:(input$chans -1)]) ) ,
                                                   MARGIN = 2,
                                                   as.numeric(apply((2^(data.merged[,1:(input$chans -1)])),2,median)),
                                                   FUN = "/")
                                         ),
                                      Accession=data.merged$Accession,
                                      GeneID=data.merged$GeneID,
                                      UniquePeps=data.merged$UniquePeps,
                                      Kd = data.merged$Kd
            )
          }else{
            data.merged <- data.frame(log2(2^(data.merged[,1:(input$chans -1)])),
                                      Accession=data.merged$Accession,
                                      GeneID=data.merged$GeneID,
                                      UniquePeps=data.merged$UniquePeps,
                                      Kd = data.merged$Kd
            )
          }
          
          
          
          data.merged<-na.omit(data.merged)
          
          data.merged
          
        } else {
          
          data.merged <- data.frame(data.merged[,1:(input$chans -1 )], Accession = data.merged$Accession,
                                    GeneID = data.merged$GeneID, UniquePeps = data.merged$uniquePepr1)
          colnames(data.merged)<- c(final.Names,
                                    "Accession", "GeneID","UniquePeps")
          
          
          tmp<-data.merged[,1:(input$chans -1 )]
          tf <- as.data.frame(lapply(tmp, function(x) (is.na(x))))
          countsNAs<-as.data.frame(apply(tf,1,function(x)table(x)["TRUE"]))
          n_of_miss<-as.data.frame(as.numeric(str_replace_all(as.list(countsNAs[,1]),"NA",'0')))
          data.merged <- data.frame(data.merged,n_of_miss)
          colnames(data.merged)<-c( final.Names,
                                    "Accession", "GeneID","UniquePeps","MissingVal")
          #
          missing_val <- 0
          #
          data.merged<- as.data.frame(data.merged[data.merged$MissingVal <= missing_val, ])
          #
          # #Specify the number of missing points.For zero missing point  is ==0
          #
          # #filiter for 2 unique peptides
          data.merged <- data.merged[data.merged$UniquePeps > 1, ]
          #
          #
          if(input$normalize == 'loess'){
            data.merged <- data.frame(log2(normalize.loess(2^(data.merged[,1:(input$chans -1)]))),
                                      Accession=data.merged$Accession,
                                      GeneID=data.merged$GeneID,
                                      UniquePeps=data.merged$UniquePeps)
          }else if(input$normalize == 'median'){
            data.merged <- data.frame(log2( sweep( (2^(data.merged[,1:(input$chans -1)]) ) ,
                                                   MARGIN = 2,
                                                   as.numeric(apply((2^(data.merged[,1:(input$chans -1)])),2,median)),
                                                   FUN = "/")
                                        ),
                                      Accession=data.merged$Accession,
                                      GeneID=data.merged$GeneID,
                                      UniquePeps=data.merged$UniquePeps)
          }else{
            data.merged <- data.frame(log2(((2^(data.merged[,1:(input$chans -1)])))),
                                      Accession=data.merged$Accession,
                                      GeneID=data.merged$GeneID,
                                      UniquePeps=data.merged$UniquePeps)
          }
          
          data.merged<-na.omit(data.merged)
          
          data.merged
        }
        
      } else{
        
        data.merged <- tempdat[,1:(input$chans*input$reps - 2)]
        data.merged <- tempdat[,1:(input$chans*input$reps - 2)]
        if( input$dorem == 'no'){
          Accession <- tempdat$Accession
          MissingVal <- UniquePeps
          data.merged <- cbind(data.merged,Accession, GeneID = GeneID,UniquePeps,MissingVal)
          
          data.merged <- data.merged[!is.na(rowSums(data.merged[,1:(input$chans*input$reps -2)])),]
          #PR add the na.omit
          data.merged <- na.omit(data.merged[data.merged$UniquePeps > 1, ])          
          if(input$normalize == 'loess'){
            data.merged <- data.frame((log2(normalize.loess(2^(data.merged[,1:(input$chans*input$reps - 2)])))),
                                      Accession=data.merged$Accession,
                                      GeneID=data.merged$GeneID,
                                      UniquePeps=data.merged$UniquePeps)
          }else if(input$normalize == 'median'){
              data.merged <- data.frame(log2( sweep( (2^(data.merged[,1:(input$chans*input$reps - 2)]) ) ,
                                                   MARGIN = 2,
                                                   as.numeric(apply((2^(data.merged[,1:(input$chans*input$reps - 2)])),2,median)),
                                                   FUN = "/")
                                      ),
                                      Accession=data.merged$Accession,
                                      GeneID=data.merged$GeneID,
                                      UniquePeps=data.merged$UniquePeps)
          }else{
            data.merged <- data.frame((log2((2^(data.merged[,1:(input$chans*input$reps - 2)])))),
                                      Accession=data.merged$Accession,
                                      GeneID=data.merged$GeneID,
                                      UniquePeps=data.merged$UniquePeps)
          }
          
          
          data.merged <- data.merged[!is.na(rowSums(data.merged[,1:(input$chans*input$reps -2)])),]
          data.merged<-na.omit(data.merged)
          
          data.merged
        }else{
          
          Accession <- tempdat$pepsum1.Accession
          data.merged <- cbind(data.merged,Accession, GeneID = GeneID,UniquePeps, num1 = tempdat$num1, num2 = tempdat$num2)
          
          
          data.merged <- data.merged[!is.na(rowSums(data.merged[,1:(input$chans*input$reps -2)])),]
          #PR add the na.omit
          data.merged <- na.omit(data.merged[data.merged$UniquePeps > 1, ])
          if(input$normalize == 'loess'){
            data.merged <- data.frame((log2(normalize.loess(2^(data.merged[,1:(input$chans*input$reps - 2)])))),
                                      Accession=data.merged$Accession,
                                      GeneID=data.merged$GeneID,
                                      UniquePeps=data.merged$UniquePeps, num1 = data.merged$num1, num2 = data.merged$num2)
          }else if(input$normalize == 'median'){
            
             data.merged <- data.frame(log2( sweep( (2^(data.merged[,1:(input$chans*input$reps - 2)]) ) ,
                                                                  MARGIN = 2,
                                                                  as.numeric(apply((2^(data.merged[,1:(input$chans*input$reps - 2)])),2,median)),
                                                                  FUN = "/")
                                          ),
                                      Accession=data.merged$Accession,
                                      GeneID=data.merged$GeneID,
                                      UniquePeps=data.merged$UniquePeps, num1 = data.merged$num1, num2 = data.merged$num2)
          }else{
            data.merged <- data.frame((log2((2^(data.merged[,1:(input$chans*input$reps - 2)])))),
                                      Accession=data.merged$Accession,
                                      GeneID=data.merged$GeneID,
                                      UniquePeps=data.merged$UniquePeps, num1 = data.merged$num1, num2 = data.merged$num2)
          }
          
          data.merged <- data.merged[data.merged$num1 > 1 | data.merged$num2 > 1 , ]
          data.merged <- data.merged[!is.na(rowSums(data.merged[,1:(input$chans*input$reps -2)])),]
          data.merged<-na.omit(data.merged)
          
          data.merged
        }
        
      }
      
      
    }
    
    data.merged<-na.omit(data.merged)
    
    data.merged
  })
  
  sigFinalNames <- reactive({
    paste0("C_",1:input$chans)
  })
  
  sigPredNames <- reactive({
    paste0("predX",1:input$chans)
  })
  
  dataMerge2 <- reactive({
    nvec <- channels()
    nvec <- length(nvec)
    data.merged <- dataMerge()
    
    if(input$modtyp == "sigmoid"){
      if(input$datype == 'intensity'){
        
        
        conc <- sigConc()
        if(input$incpd == TRUE){
          
          final.Names <- paste0('rep1_C',0:(input$chans - 2 ))
          pred.names <- paste0('predX',1:(input$chans -1))
          colnames(data.merged[,1:(input$chans -1)]) <- final.Names
          data_merged_positives<- data.merged
          data.merged<-na.omit(data.merged[data.merged[,1:input$chans] >= 1,])
          
          data_merged_positives2<-( (1/data_merged_positives[,1:(input$chans -1 )]))*100
          Reps_FC<-data.frame(data_merged_positives2 ,
                              Accession =  data_merged_positives$Accession,GeneID = data_merged_positives$GeneID,
                              UniquePeps = data_merged_positives$UniquePeps, depletionConstant = data_merged_positives$Kd
          )
          
          
          ryegrass.m1<- vector(mode = "list",length = nrow(Reps_FC))
          pvals<-list()
          stderr<-list()
          model_pred<-list()
          coeff_predicted<-list()
          for(i in 1:nrow(Reps_FC)){
            #print(i)
            
            #nrow(full_df_2)
            #maxIt and relTol to be user defined
            ryegrass.m1[[i]]<-try(drm(as.numeric(Reps_FC[i,1:(input$chans - 1 )]) ~ as.numeric(conc),
                                      na.action = na.omit,
                                      control = drmc(constr = FALSE, errorm = FALSE, noMessage = TRUE, maxIt = 1000, relTol = 1e-06),
                                      fct = LL.4(fixed=c(NA, NA, NA, NA), #see note @top this file
                                                 names = c("Slope", "Lower Limit", "Upper Limit", "RB50"))),silent = TRUE)
            
          }
          
          failed_sigm=0
          for(i in 1:length(ryegrass.m1)){
            #print(i)
            #checking_val if FALSE  the model has failed to calculate the pval
            checking_val<-try(is.numeric(coefficients(ryegrass.m1[[i]])[["Slope:(Intercept)"]]),silent = TRUE)
            
            if(checking_val=="TRUE"){
              #print(checking_val)
              pvals[[i]]<-t(as.data.frame(summary(ryegrass.m1[[i]])$coefficients[13:16]))
              colnames(pvals[[i]])<-c("SlopePval", "Lower_LimitPval", "Upper_LimitPval", "RB50Pval")
              coeff_predicted[[i]]<-t(data.frame(coefficients(ryegrass.m1[[i]])))
              colnames(coeff_predicted[[i]])<-c("SlopeCoef", "Lower_LimitCoef", "Upper_LimitCoef","RB50Coef")
              stderr[[i]]<-t(as.data.frame(summary(ryegrass.m1[[i]])$coefficients[5:8]))
              colnames(stderr[[i]])<-c("SlopeErr", "Lower_LimitErr", "Upper_LimitErr","RB50Err")
              
              model_pred[[i]]<-predict(ryegrass.m1[[i]])
            }else{
              failed_sigm=failed_sigm+1
              
              fit <- lm(as.numeric(Reps_FC[i,1:(input$chans -1)]) ~ poly(log10(conc),2 ))
              #extract the pval
              pval<-as.numeric(summary(fit)$coefficients[,4] )
              pvals[[i]]<- t(as.data.frame(c(pval,"lm-fit:intercept.slope.quadratic") ))
              colnames(pvals[[i]])<-c("SlopePval", "Lower_LimitPval", "Upper_LimitPval","RB50Pval")
              stderr[[i]]<- data.frame(NA,NA,NA,NA)
              colnames(stderr[[i]])<-c("SlopeErr", "Lower_LimitErr", "Upper_LimitErr","RB50Err")
              coeff_predicted[[i]]<-data.frame(NA,NA,NA,NA)
              colnames(coeff_predicted[[i]])<-c("SlopeCoef", "Lower_LimitCoef", "Upper_LimitCoef","RB50Coef")
              model_pred[[i]]<- as.numeric(fitted(fit))
            } #just adding NAs for the times the model failed
          }
          
          
          modelsReps<-data.frame(
            do.call(rbind.data.frame,lapply(model_pred,function(x) as.numeric(x))),
            Reps_FC$GeneID,
            do.call(rbind.data.frame,lapply(pvals,function(x) x) ),
            do.call(rbind.data.frame,lapply(coeff_predicted,function(x) x)) ,
            do.call(rbind.data.frame,lapply(stderr,function(x) x) )
          )
          colnames(modelsReps)<-c(pred.names,"GeneID",
                                  "SlopePval", "Lower_LimitPval","Upper_LimitPval", "RB50Pval",
                                  "SlopeCoef", "Lower_LimitCoef","Upper_LimitCoef", "RB50Coef",
                                  "SlopeErr", "Lower_LimitErr","Upper_LimitErr", "RB50Err"
          )
          
          data_merged_2 <-merge.data.frame(modelsReps,Reps_FC,by = 'GeneID')
          
          
          data_merged_2<-data.frame(data_merged_2,"Top_minus_min"=data_merged_2$predX1-data_merged_2[,paste("predX",(input$chans-1),sep = "")])
          
          crap <- crapome()
          #
          tempcrap <- crap$Gene
          tempcrap<- crap$percentagePresent[match(data_merged_2$GeneID,crap$Gene)]
          data_merged_2 <- data.frame(data_merged_2, CRAPomePercent = tempcrap)
          
          proteome<-as.vector(toupper(data_merged_2$GeneID))
          mykinases <- intersect(proteome,kinome)
          
          if(!is.null(input$venninp)){
            myvenninp <- uploadVenn()
            uploadsInt <- intersect(proteome,myvenninp)
            
            myvenvec <- match(proteome, uploadsInt, nomatch = NA)
            
            ## now combine with my kin vec
            
            mykinvec <- match(proteome,mykinases, nomatch = NA)
            mykinvec[!is.na(mykinvec) & !is.na(myvenvec)] <- 'KINASE + UPLOAD'
            mykinvec[!is.na(mykinvec) & is.na(myvenvec)] <- 'KINASE'
            mykinvec[is.na(mykinvec) & !is.na(myvenvec)] <- 'UPLOAD'
            print(mykinvec)
            
          } else {
            
            mykinvec <- match(proteome,mykinases, nomatch = NA)
            mykinvec[!is.na(mykinvec)]<- 'KINASE'
            
          }
          
          data_merged_2<- data.frame(data_merged_2, correctedRB50 = (data_merged_2$RB50Coef*data_merged_2$depletionConstant),Kinase = mykinvec)
          data_merged_2
          
        } else {
          
          final.Names <- paste0('rep1_C',0:(input$chans - 2 ))
          pred.names <- paste0('predX',1:(input$chans -1))
          colnames(data.merged[,1:(input$chans -1)]) <- final.Names
          data_merged_positives<- data.merged
          # na.omit(data.merged[data.merged[,1:input$chans] >= 1,])
          
          data_merged_positives2<-( (1/data_merged_positives[,1:(input$chans -1 )]))*100
          Reps_FC<-data.frame(data_merged_positives2 ,
                              Accession =  data_merged_positives$Accession,GeneID = data_merged_positives$GeneID,
                              UniquePeps = data_merged_positives$UniquePeps
          )
          
          
          ryegrass.m1<- vector(mode = "list",length = nrow(Reps_FC))
          pvals<-list()
          stderr<-list()
          model_pred<-list()
          coeff_predicted<-list()
          for(i in 1:nrow(Reps_FC)){
            #print(i)
            
            #nrow(full_df_2)
            #maxIt and relTol to be user defined
            ryegrass.m1[[i]]<-try(drm(as.numeric(Reps_FC[i,1:(input$chans - 1 )]) ~ as.numeric(conc),
                                      na.action = na.omit,
                                      control = drmc(constr = FALSE, errorm = FALSE, noMessage = TRUE, maxIt = 1000, relTol = 1e-06),
                                      fct = LL.4(fixed=c(NA, NA, NA, NA), #see note @top this file
                                                 names = c("Slope", "Lower Limit", "Upper Limit", "RB50"))),silent = TRUE)
            
          }
          
          failed_sigm=0
          for(i in 1:length(ryegrass.m1)){
            #print(i)
            #checking_val if FALSE  the model has failed to calculate the pval
            checking_val<-try(is.numeric(coefficients(ryegrass.m1[[i]])[["Slope:(Intercept)"]]),silent = TRUE)
            
            if(checking_val=="TRUE"){
              #print(checking_val)
              pvals[[i]]<-t(as.data.frame(summary(ryegrass.m1[[i]])$coefficients[13:16]))
              colnames(pvals[[i]])<-c("SlopePval", "Lower_LimitPval", "Upper_LimitPval", "RB50Pval")
              coeff_predicted[[i]]<-t(data.frame(coefficients(ryegrass.m1[[i]])))
              colnames(coeff_predicted[[i]])<-c("SlopeCoef", "Lower_LimitCoef", "Upper_LimitCoef","RB50Coef")
              stderr[[i]]<-t(as.data.frame(summary(ryegrass.m1[[i]])$coefficients[5:8]))
              colnames(stderr[[i]])<-c("SlopeErr", "Lower_LimitErr", "Upper_LimitErr","RB50Err")
              
              model_pred[[i]]<-predict(ryegrass.m1[[i]])
            }else{
              failed_sigm=failed_sigm+1
              
              fit <- lm(as.numeric(Reps_FC[i,1:(input$chans -1)]) ~ poly(log10(conc),2 ))
              #extract the pval
              pval<-as.numeric(summary(fit)$coefficients[,4] )
              pvals[[i]]<- t(as.data.frame(c(pval,"lm-fit:intercept.slope.quadratic") ))
              colnames(pvals[[i]])<-c("SlopePval", "Lower_LimitPval", "Upper_LimitPval","RB50Pval")
              stderr[[i]]<- data.frame(NA,NA,NA,NA)
              colnames(stderr[[i]])<-c("SlopeErr", "Lower_LimitErr", "Upper_LimitErr","RB50Err")
              coeff_predicted[[i]]<-data.frame(NA,NA,NA,NA)
              colnames(coeff_predicted[[i]])<-c("SlopeCoef", "Lower_LimitCoef", "Upper_LimitCoef","RB50Coef")
              model_pred[[i]]<- as.numeric(fitted(fit))
            } #just adding NAs for the times the model failed
          }
          
          
          modelsReps<-data.frame(
            do.call(rbind.data.frame,lapply(model_pred,function(x) as.numeric(x))),
            Reps_FC$GeneID,
            do.call(rbind.data.frame,lapply(pvals,function(x) x) ),
            do.call(rbind.data.frame,lapply(coeff_predicted,function(x) x)) ,
            do.call(rbind.data.frame,lapply(stderr,function(x) x) )
          )
          colnames(modelsReps)<-c(pred.names,"GeneID",
                                  "SlopePval", "Lower_LimitPval","Upper_LimitPval", "RB50Pval",
                                  "SlopeCoef", "Lower_LimitCoef","Upper_LimitCoef", "RB50Coef",
                                  "SlopeErr", "Lower_LimitErr","Upper_LimitErr", "RB50Err"
          )
          
          data_merged_2 <-merge.data.frame(modelsReps,Reps_FC,by = 'GeneID')
          
          
          data_merged_2<-data.frame(data_merged_2,"Top_minus_min"=data_merged_2$predX1-data_merged_2[,paste("predX",(input$chans-1),sep = "")])
          
          ## crapome integration
          
          crap <- crapome()
          #
          tempcrap <- crap$Gene
          tempcrap<- crap$percentagePresent[match(data_merged_2$GeneID,crap$Gene)]
          data_merged_2 <- data.frame(data_merged_2, CRAPomePercent = tempcrap)
          
          proteome<-as.vector(toupper(data_merged_2$GeneID))
          mykinases <- intersect(proteome,kinome)
          
          if(!is.null(input$venninp)){
            myvenninp <- uploadVenn()
            uploadsInt <- intersect(proteome,myvenninp)
            
            myvenvec <- match(proteome, uploadsInt, nomatch = NA)
            
            ## now combine with my kin vec
            
            mykinvec <- match(proteome,mykinases, nomatch = NA)
            mykinvec[!is.na(mykinvec) & !is.na(myvenvec)] <- 'KINASE + UPLOAD'
            mykinvec[!is.na(mykinvec) & is.na(myvenvec)] <- 'KINASE'
            mykinvec[is.na(mykinvec) & !is.na(myvenvec)] <- 'UPLOAD'
            print(mykinvec)
            
          } else {
            
            mykinvec <- match(proteome,mykinases, nomatch = NA)
            mykinvec[!is.na(mykinvec)]<- 'KINASE'
            
          }
          
          
          
          data_merged_2<- data.frame(data_merged_2,Kinase = mykinvec)
          data_merged_2
          
        }
        
        
      } else{
        
        conc <- sigConc()
        final.Names <- sigFinalNames()
        pred.names <- sigPredNames()
        colnames(data.merged[,1:input$chans]) <- final.Names
        data_merged_positives<- data.merged
        # na.omit(data.merged[data.merged[,1:input$chans] >= 1,])
        
        data_merged_positives2<-( (1/data_merged_positives[,1:input$chans]))*100
        if(input$incpd == TRUE){
          Reps_FC<-data.frame(data_merged_positives2 ,
                              Accession =  data_merged_positives$Accession,GeneID = data_merged_positives$GeneID,
                              UniquePeps = data_merged_positives$UniquePeps, depletionConstant = data_merged_positives$Kd, MissingVal = data_merged_positives$MissingVal
          )
        }else{
          Reps_FC<-data.frame(data_merged_positives2 ,
                              Accession =  data_merged_positives$Accession,GeneID = data_merged_positives$GeneID,
                              UniquePeps = data_merged_positives$UniquePeps, MissingVal = data_merged_positives$MissingVal
          )
        }
        
        ryegrass.m1<- vector(mode = "list",length = nrow(Reps_FC))
        pvals<-list()
        stderr<-list()
        model_pred<-list()
        coeff_predicted<-list()
        for(i in 1:nrow(Reps_FC)){
          #print(i)
          
          #nrow(full_df_2)
          #maxIt and relTol to be user defined
          ryegrass.m1[[i]]<-try(drm(as.numeric(Reps_FC[i,1:input$chans]) ~ as.numeric(conc),
                                    na.action = na.omit,
                                    control = drmc(constr = FALSE, errorm = FALSE, noMessage = TRUE, maxIt = 1000, relTol = 1e-06),
                                    fct = LL.4(fixed=c(NA, NA, NA, NA), #see note @top this file
                                               names = c("Slope", "Lower Limit", "Upper Limit", "RB50"))),silent = TRUE)
          
        }
        
        failed_sigm=0
        for(i in 1:length(ryegrass.m1)){
          #print(i)
          #checking_val if FALSE  the model has failed to calculate the pval
          checking_val<-try(is.numeric(coefficients(ryegrass.m1[[i]])[["Slope:(Intercept)"]]),silent = TRUE)
          
          if(checking_val=="TRUE"){
            #print(checking_val)
            pvals[[i]]<-t(as.data.frame(summary(ryegrass.m1[[i]])$coefficients[13:16]))
            colnames(pvals[[i]])<-c("SlopePval", "Lower_LimitPval", "Upper_LimitPval", "RB50Pval")
            coeff_predicted[[i]]<-t(data.frame(coefficients(ryegrass.m1[[i]])))
            colnames(coeff_predicted[[i]])<-c("SlopeCoef", "Lower_LimitCoef", "Upper_LimitCoef","RB50Coef")
            stderr[[i]]<-t(as.data.frame(summary(ryegrass.m1[[i]])$coefficients[5:8]))
            colnames(stderr[[i]])<-c("SlopeErr", "Lower_LimitErr", "Upper_LimitErr","RB50Err")
            
            model_pred[[i]]<-predict(ryegrass.m1[[i]])
          }else{
            failed_sigm=failed_sigm+1
            
            fit <- lm(as.numeric(Reps_FC[i,1:input$chans]) ~ poly(log10(conc),2 ))
            #extract the pval
            pval<-as.numeric(summary(fit)$coefficients[,4] )
            pvals[[i]]<- t(as.data.frame(c(pval,"lm-fit:intercept.slope.quadratic") ))
            colnames(pvals[[i]])<-c("SlopePval", "Lower_LimitPval", "Upper_LimitPval","RB50Pval")
            stderr[[i]]<- data.frame(NA,NA,NA,NA)
            colnames(stderr[[i]])<-c("SlopeErr", "Lower_LimitErr", "Upper_LimitErr","RB50Err")
            coeff_predicted[[i]]<-data.frame(NA,NA,NA,NA)
            colnames(coeff_predicted[[i]])<-c("SlopeCoef", "Lower_LimitCoef", "Upper_LimitCoef","RB50Coef")
            model_pred[[i]]<- as.numeric(fitted(fit))
          } #just adding NAs for the times the model failed
        }
        
        
        modelsReps<-data.frame(
          do.call(rbind.data.frame,lapply(model_pred,function(x) as.numeric(x))),
          Reps_FC$GeneID,
          do.call(rbind.data.frame,lapply(pvals,function(x) x) ),
          do.call(rbind.data.frame,lapply(coeff_predicted,function(x) x)) ,
          do.call(rbind.data.frame,lapply(stderr,function(x) x) )
        )
        colnames(modelsReps)<-c(pred.names,"GeneID",
                                "SlopePval", "Lower_LimitPval","Upper_LimitPval", "RB50Pval",
                                "SlopeCoef", "Lower_LimitCoef","Upper_LimitCoef", "RB50Coef",
                                "SlopeErr", "Lower_LimitErr","Upper_LimitErr", "RB50Err"
        )
        data_merged_2<-merge.data.frame(modelsReps,Reps_FC,by="GeneID")
        
        data_merged_2<-data.frame(data_merged_2,"Top_minus_min"=data_merged_2$predX1-data_merged_2[,paste("predX",input$chans,sep = "")])
        
        
        ## crapome integration
        
        
        crap <- crapome()
        #
        tempcrap <- crap$Gene
        tempcrap<- crap$percentagePresent[match(data_merged_2$GeneID,crap$Gene)]
        data_merged_2 <- data.frame(data_merged_2, CRAPomePercent = tempcrap)
        
        proteome<-as.vector(toupper(data_merged_2$GeneID))
        mykinases <- intersect(proteome,kinome)
        
        if(!is.null(input$venninp)){
          myvenninp <- uploadVenn()
          uploadsInt <- intersect(proteome,myvenninp)
          
          myvenvec <- match(proteome, uploadsInt, nomatch = NA)
          
          ## now combine with my kin vec
          
          mykinvec <- match(proteome,mykinases, nomatch = NA)
          mykinvec[!is.na(mykinvec) & !is.na(myvenvec)] <- 'KINASE + UPLOAD'
          mykinvec[!is.na(mykinvec) & is.na(myvenvec)] <- 'KINASE'
          mykinvec[is.na(mykinvec) & !is.na(myvenvec)] <- 'UPLOAD'
          print(mykinvec)
          
        } else {
          
          mykinvec <- match(proteome,mykinases, nomatch = NA)
          mykinvec[!is.na(mykinvec)]<- 'KINASE'
          
        }
        
        
        if(input$incpd == TRUE){
          
          data_merged_2<- data.frame(data_merged_2, correctedRB50 = (data_merged_2$RB50Coef*data_merged_2$depletionConstant),Kinase = mykinvec)
        }else{
          data_merged_2<- data.frame(data_merged_2,Kinase = mykinvec)
        }
        data_merged_2
        
      }
      
    } else{
      if(input$datype == "intensity"){
        conc<- rep(0:(input$chans - 2), times = input$reps)
        
      }else{
        
        conc<- rep(0:(input$chans - 1), times = rReps())[channels()]
        
      }
      
      design<-model.matrix(~poly(conc,2))
      colnames(design)<-c("Intercept","Slope","Quadratic")
      
      # reactive start
      
      fit <- lmFit(data.merged[,1:length(conc)], method = "ls" , design = design )
      fit <- eBayes(fit)
      
      res <- topTable(fit, coef = "Slope", number = nrow(data.merged), adjust="BH") #pval for the slope
      res2 <- topTable(fit, coef = 1, number = nrow(data.merged), adjust="BH")#pval for the intercept
      res3 <- topTable(fit, coef = "Quadratic", number = nrow(data.merged), adjust="BH") #pval for the quadratic term ()
      
      
      #add the pvalues to the dataframe
      
      tmp_1<- cbind(data.merged[rownames(res),],res)
      
      tmp_2<- cbind(data.merged[rownames(res2),],res2)
      
      tmp_3<- cbind(data.merged[rownames(res3),],res3)
      
      ####
      
      
      
      tobeselected <- merge.data.frame(tmp_1,tmp_2,by="Accession")
      tobeselected <- merge.data.frame(tobeselected,tmp_3,by="Accession")
      print(colnames(tobeselected))
      
      selectnames <- c(paste0(colnames(data.merged)[1:length(conc)],".x"),
                       "logFC.x", "AveExpr.x", "P.Value", "adj.P.Val", "P.Value.x",
                       "adj.P.Val.x", "P.Value.y", "adj.P.Val.y","Accession","GeneID.x","UniquePeps")
      
      
      data.merged<- tobeselected[,match(selectnames, colnames(tobeselected))]
      print(colnames(data.merged))
      proteome<-as.vector(toupper(tobeselected$GeneID.x))
      mykinases <- intersect(proteome,kinome)
      
      if(!is.null(input$venninp)){
        myvenninp <- uploadVenn()
        uploadsInt <- intersect(proteome,myvenninp)
        
        myvenvec <- match(proteome, uploadsInt, nomatch = NA)
        
        ## now combine with my kin vec
        
        mykinvec <- match(proteome,mykinases, nomatch = NA)
        mykinvec[!is.na(mykinvec) & !is.na(myvenvec)] <- 'KINASE + UPLOAD'
        mykinvec[!is.na(mykinvec) & is.na(myvenvec)] <- 'KINASE'
        mykinvec[is.na(mykinvec) & !is.na(myvenvec)] <- 'UPLOAD'
        print(mykinvec)
        
      } else {
        
        mykinvec <- match(proteome,mykinases, nomatch = NA)
        mykinvec[!is.na(mykinvec)]<- 'KINASE'
        
      }
      
      
      crap <- crapome()
      #
      tempcrap <- crap$Gene
      tempcrap<- crap$percentagePresent[match(toupper(data.merged$GeneID.x),crap$Gene)]
      data.merged <- data.frame(data.merged, CRAPomePercent = tempcrap,Kinase = mykinvec)
      print(colnames(data.merged))
      
      nam <- finalNames()
      if(input$datype == 'intensity'){
        nam <- nam[-seq(1,input$reps*input$chans,by = input$chans)]
      }
      colnames(data.merged)[1:length(nam)] <- nam
      # print(colnames(data.merged[match(c('P.Value', 'adj.P.Val', 'P.Value.x', 'adj.P.Val.x', 'P.Value.y', 'adj.P.Val.y'),colnames(data.merged))]))
      # colnames(data.merged[,match(c('P.Value', 'adj.P.Val', 'P.Value.x', 'adj.P.Val.x', 'P.Value.y', 'adj.P.Val.y'),colnames(data.merged))]) <- c('P.Value_intercept', 'adj.P.Val_intercept', 'P.Value_slope', 'adj.P.Val_slope', 'P.Value_quadratic', 'adj.P.Val_quadratic')
      
      # colnames(data.merged[match(c('P.Value', 'adj.P.Val', 'P.Value.x', 'adj.P.Val.x', 'P.Value.y', 'adj.P.Val.y'),colnames(data.merged))]) <- c('P.Value_intercept', 'adj.P.Val_intercept', 'P.Value_slope', 'adj.P.Val_slope', 'P.Value_quadratic', 'adj.P.Val_quadratic')
      data.merged
    }
    
  })
  
  
  rSu<- reactive({
    if(input$reps == 1 ){
      
      
      data.merged<- dataMerge()
      data.merged
      
    }else{
      data.merged <- dataMerge2()
      data.merged
      
    }
  })
  
  
  ###################
  ## output
  ###################
  
  output$venn <-  renderPlot({
    req(data())
    if(!is.null(input$venninp)){
      
      upload <- uploadVenn()
      upload<- as.vector(toupper(upload))
      print(upload)
      data.merged <- dataMerge()
      
      proteome<-as.vector(toupper(data.merged$GeneID))
      universe <- unique(c(kinome,proteome,upload))
      
      count<- matrix(0, ncol = 3 , nrow = length(universe))
      colnames(count) <- c("kinome",'proteome','upload')
      
      for(i in 1:length(universe)){
        count[i,1]<- universe[i] %in% kinome
        count[i,2]<- universe[i] %in% proteome
        count[i,3]<- universe[i] %in% upload
      }
      
      vennDiagram(vennCounts(count), circle.col = c("blue","red","green"), cex = 1,lwd = 2)
      
      
    }else{
      
      data.merged <- dataMerge()
      
      proteome<-as.vector(toupper(data.merged$GeneID))
      universe <- unique(c(kinome,proteome))
      # Generate a matrix, with the sets in columns and possible letters on rows
      Counts <- matrix(0, nrow=length(universe), ncol=2)
      # Populate the said matrix
      for (i in 1:length(universe)) {
        Counts[i,1] <- universe[i] %in% kinome
        Counts[i,2] <- universe[i] %in% proteome
        #Counts[i,3] <- universe[i] %in% Metacore
        #Counts[i,3] <- universe[i] %in% EXOCYTOSIS
        
      }
      
      colnames(Counts) <- c("Kinome","Proteome")
      cols<-c("Red", "Blue")
      
      #### VENN
      
      vennDiagram(vennCounts(Counts), circle.col=cols,
                  cex=1, #title size
                  lwd=2 #circle line size
      )
    }
    
  })
  
  output$bar<- renderPlot({
    vec<- channels()
    vec<- length(vec)
    palette.bar <- rep(terrain.colors(input$reps),each = ifelse(input$datype != 'intensity',input$chans,input$chans - 1 ) )
    data.merged<- dataMerge()
    
    boxplot(data.merged[,1:vec], col=palette.bar,las=2, cex.axis=1, main=c("Box Plots"),
            ylab=c("Log2(ratios)"))
    legend("topright",legend = paste("rep",1:input$reps,sep = ' '), fill = terrain.colors(input$reps))
    
  })
  
  
  output$plot2<-renderPlot({
    
    vec <- channels()
    pal <- rainbow(length(vec))
    leg.nam <- finalNames()
    data.merged <- dataMerge()
    missing_val <- 0
    
    par(mfrow = c(1,2))
    plot(x=rank(data.merged[,1]),y=data.merged[,1], cex.axis=1,
         main=c("Change Distribution"),
         col=pal[1], ylab=c("Log2(ratios)"), xlab = c("Proteins"))
    if(length(vec) > 1){
      for(i in 2:length(vec)){
        points(x=rank(data.merged[,i]),y=data.merged[,i], cex.axis=1, main=c(""),col=pal[i])
      }
    }
    legend("topleft", legend = leg.nam, fill = pal)
    
    
    plot(density(x=data.merged[,1]),col= pal[1], main=c(" Density Distribution"), ylim = c(0,5 ),cex.axis = 1)
    legend("topleft", legend = leg.nam, fill = pal)
    
    if(length(vec) > 1){
      for(i in 2:length(vec)){
        lines(density(x=data.merged[,i]), col=pal[i], main = c(""))
      }
    }
  })
  
  
  output$plot3<- renderPlot({
    
    vec <- channels()
    
    
    data.merged<- dataMerge()
    # print(colnames(data.merged))
    vsn::meanSdPlot(as.matrix(data.merged[,1:length(vec)]))
  })
  
  output$plot4<- renderPlot({
    if(input$modtyp == 'sigmoid'){
      plot.new()
      legend('topleft', c("Sigmoidal fit applied, no linear plots available"),bty = 'n')
    }else{
      
      
      data.merged<- dataMerge2()
      m0 <- ggplot(data.merged, aes(x=data.merged$P.Value))
      m0<-m0 + geom_histogram(aes(fill = ..count..),binwidth = 0.01) +
        scale_fill_gradient("Count", low = "green", high = "red")+
        xlab("P.val slope")
      
      
      m1 <- ggplot(data.merged, aes(x=data.merged$P.Value.x))
      m1<- m1 + geom_histogram(aes(fill = ..count..),binwidth = 0.01) +
        scale_fill_gradient("Count", low = "green", high = "red")+
        xlab("Pval intercept")
      
      m2 <- ggplot(data.merged, aes(x=data.merged$P.Value.y))
      m2 <- m2 + geom_histogram(aes(fill = ..count..),binwidth = 0.01) +
        scale_fill_gradient("Count", low = "green", high = "red")+
        xlab("Pval quadratic")
      
      grid.arrange(m0,m1,m2)
    }
  })
  
  output$volcanoint<- renderPlot({
    
    res<- dataMerge2()
    # avgthr=0.2 #sign threshold for the averege fold change 0.3(log2)  is 1.3 FC
    
    par(mar=c(5,5,5,10), xpd=TRUE)
    # Make a basic volcano plot
    with(res, plot(res$AveExpr.x, -log10(res$P.Value.x), pch=20, main="Volcano plot (Intercept pval )",xlab=c("Log2_AvgFC"),ylab=c("-Log10(Pval)"), xlim=c(-abs(max(res$AveExpr.x)+1),abs(max(res$AveExpr.x)+1))))
    
    # Add colored points: red if padj<0.05, orange of log2FC>1, green if both)
    s=subset(res, P.Value.x<input$pvalsli )
    with(s, points(s$AveExpr.x, -log10(s$P.Value.x), pch=20, col="red"))
    
    s=subset(res, abs(res$AveExpr.x)>input$avthrssli)
    with(s, points(s$AveExpr.x, -log10(s$P.Value.x), pch=20, col="orange"))
    
    s=subset(res, P.Value.x<input$pvalsli & abs(res$AveExpr.x)>input$avthrssli)
    with(s, points(s$AveExpr.x, -log10(s$P.Value.x), pch=20, col="green"))
    
    # Label points with the textxy function from the calibrate plot
    s=subset(res, P.Value.x<input$pvalsli & abs(res$AveExpr.x)>input$avthrssli)
    with(s, textxy( s$AveExpr.x, -log10(s$P.Value.x),  labs=s$GeneID.x, cex=1)
    )
    legend("bottomleft", title="Legend",cex = 0.8,
           c("Not significant",
             paste("P.Value",input$pvalsli, sep = " "), #red
             paste("AvgFC >", input$avthrssli, sep=""), #orange,
             paste("P.Value", input$pvalsli,"& AvgFC >", input$avthrssli, sep="") #green
           ),
           col=c("black","red","orange","green"),
           horiz=FALSE, pch=c(19))
    
    
    
  })
  
  output$volcanoquad<- renderPlot({
    
    res<- dataMerge2()
    # avgthr=0.2 #sign threshold for the averege fold change 0.3(log2)  is 1.3 FC
    
    par(mar=c(5,5,5,10), xpd=TRUE)
    # Make a basic volcano plot
    with(res, plot(res$AveExpr.x, -log10(res$P.Value.y), pch=20, main="Volcano plot (Quadratic pval )",xlab=c("Log2_AvgFC"),ylab=c("-Log10(Pval)"), xlim=c(-abs(max(res$AveExpr.x)+1),abs(max(res$AveExpr.x)+1))))
    
    # Add colored points: red if padj<0.05, orange of log2FC>1, green if both)
    s=subset(res, P.Value.y<input$pvalsli )
    with(s, points(s$AveExpr.x, -log10(s$P.Value.y), pch=20, col="red"))
    
    s=subset(res, abs(res$AveExpr.x)>input$avthrssli)
    with(s, points(s$AveExpr.x, -log10(s$P.Value.y), pch=20, col="orange"))
    
    s=subset(res, P.Value.y<input$pvalsli & abs(res$AveExpr.x)>input$avthrssli)
    with(s, points(s$AveExpr.x, -log10(s$P.Value.y), pch=20, col="green"))
    
    # Label points with the textxy function from the calibrate plot
    s=subset(res, P.Value.y<input$pvalsli & abs(res$AveExpr.x)>input$avthrssli)
    with(s, textxy( s$AveExpr.x, -log10(s$P.Value.y),  labs=s$GeneID.x, cex=.9)
    )
    legend("bottomleft", title="Legend",cex = 0.7,
           c("Not significant",
             paste("P.Value",input$pvalsli, sep = " "), #red
             paste("AvgFC >", input$avthrssli, sep=""), #orange,
             paste("P.Value", input$pvalsli,"& AvgFC >", input$avthrssli, sep="") #green
           ),
           col=c("black","red","orange","green"),
           horiz=FALSE, pch=c(19))
    
    
    
  })
  
  
  output$repvsrep1 <- renderUI({
    # a <- finalNames()
    # a <- paste0(a,".x")
    # b <- channels()
    a<- indexmatrix()
    selectizeInput(inputId = "repvsrep1",label = "Select Condition", choices = as.character(a$names), multiple = FALSE)
  })
  
  output$repvsrep2 <- renderUI({
    a <- finalNames()
    a <- paste0(a,".x")
    
    b <- channels()
    c <- a[b]
    if(is.null(input$repvsrep1)){
      e <- c
    } else {
      d <- match(input$repvsrep1,c)
      e <- c[-d]
    }
    
    selectInput(inputId = "repvsrep2",label = "Select Condition", choices = e, multiple = FALSE)
  })
  
  output$repvsrep <- renderPlot({
    if(input$reps > 1){
      
      data.merged <- dataMerge2()
      index <- indexmatrix()
      val = max(c(max(data.merged[,index[index[,1] == input$repvsrep1,5]],na.rm = TRUE),max(data.merged[,index[index[,1] == input$repvsrep1,6]],na.rm = TRUE)))
      
      
      plot(x=data.merged[,index[index[,1] == input$repvsrep1,5]],y=data.merged[,index[index[,1] == input$repvsrep1,6]], xlim=c(0,val +0.2), col="green" , ylim=c(0,val+0.2),
           cex.axis=1.2, main=c("LogFC-LogFC Plots"),
           xlab=paste("rep",index[index[,1] == input$repvsrep1,3]),  ylab=paste("rep",index[index[,1] == input$repvsrep1,4]))
      text(data.merged[,index[index[,1] == input$repvsrep1,5]], data.merged[,index[index[,1] == input$repvsrep1,6]], labels=data.merged$GeneID, cex= 1,pos=4)
      lines(x = c(0,val), y = c(0,val),col="red")
    } else {
      plot.new()
      title(main = 'Plot not available: only 1 replicate')
      
    }
    
  })
  
  output$plot5<- renderPlot({
    req(data())
    if(input$modtyp == 'sigmoid'){
      su <- dataMerge()
    }else{
      
      su<-  rSu()
    }
    
    index<- channels()
    index<- length(index)
    cmat <-cor(su[,1:index],use="pairwise", method = "pearson")
    corrgram(cmat, order=TRUE, lower.panel=panel.shadeNtext,
             upper.panel=panel.pie, text.panel=panel.txt,
             main="Corrgram Plots" )
    
    
  })
  
  
  ### MeanDiff
  
  output$meandiff1 <- renderUI({
    
    a <- indexmatrix()
    
    selectizeInput(inputId = "meandiff1",label = "Select Condition", choices = as.character(a$names), multiple = FALSE)
  })
  
  output$meandiff2 <- renderUI({
    a <- finalNames()
    a <- paste0(a,".x")
    
    b <- channels()
    c <- a[b]
    if(is.null(input$meandiff1)){
      e <- c
    } else {
      d <- match(input$meandiff1,c)
      e <- c[-d]
    }
    
    selectInput(inputId = "meandiff2",label = "Select Condition", choices = e, multiple = FALSE)
  })
  
  output$plot6<- renderPlot({
    
    req(data())
    if(input$modtyp == 'sigmoid' | input$reps == 1){
      plot.new()
      title(main = 'Plot not available: only 1 replicate')
    }else{
      # data.merged <- dataMerge()
      su <- rSu()
      index <- indexmatrix()
      minxy <- min(c(min(su[,index[index[,1] == input$meandiff1,5]]),min(su[,index[index[,1] == input$meandiff1,6]])))
      maxxy <- max(c(max(su[,index[index[,1] == input$meandiff1,5]]),max(su[,index[index[,1] == input$meandiff1,6]])))
      
      tmd(
        xyplot(su[,index[index[,1] == input$meandiff1,5]] ~ su[,index[index[,1] == input$meandiff1,6]]), main=input$meandiff1,xlim = c(minxy,maxxy),
        ylim = c(minxy,maxxy),
        panel=function(x, y, ...) {
          panel.xyplot(x, y, ...);
          ltext(x=x, y=y, labels=su$GeneID, pch=c(13,3,16), cex=0.5, lwd=2, pos=1, offset=1, pch = 19)
        }
      )
    }
    
    
  })
  
  
  output$plot7<- renderPlot({
    req(data())
    if( input$datype == 'intensity'){
      
      nchan<- input$chans - 1
      
    }else{
      
      nchan<- input$chans
    }
    
    su <- rSu()
    reps <- input$reps
    index <- channels()
    print(.libPaths())
    print(all.equal(1:nchan,index))
    print(input$reps)
    pca <- prcomp(su[,1:length(index)], scale=FALSE)
    
    DTA<-data.frame( as.numeric(t(su[,1:length(index)])%*%pca$x[,1]),
                     as.numeric(t(su[,1:length(index)])%*%pca$x[,2]))
    
    print(DTA)
    
    p<-ggplot(DTA, aes(x=DTA$as.numeric.t.su...1.length.index........pca.x...1..,
                       y=DTA$as.numeric.t.su...1.length.index........pca.x...2..))
    
    paste0("PC1", " (", round(pca$sdev[1]/sum(pca$sdev)*100,0), "%)")
    
    shapeval <- c(15:18,7:12)
    p <- p + geom_point(aes(colour = factor(rep(1:print(input$reps),each = (nchan)),labels = paste("Rep",1:print(input$reps)))[index],
                            shape = factor(rep(1:nchan,print(input$reps)),labels = c(paste("C",0:(nchan-1),sep = "")))[index] ), size = 5 ) +
      scale_shape_manual(values=shapeval[1:nchan]) + labs(x = paste0("PC1", " (", round(pca$sdev[1]/sum(pca$sdev)*100,0), "%)"),
                                                          y = paste0("PC2", " (", round(pca$sdev[2]/sum(pca$sdev)*100,0), "%)"), title="PCA") + labs(color = "Replicates", shape="Concentration")
    
    print(p)
    
  })
  
  
  
  
  output$plot8<- renderPlot({
    if( input$modtyp == 'sigmoid'){
      plot.new()
      title(main = 'Plot not available: Sigmoidal fit applied')
      
    }else{
      
      res<- dataMerge2()
      # avgthr=0.2 #sign threshold for the averege fold change 0.3(log2)  is 1.3 FC
      
      par(mar=c(5,5,5,10), xpd=TRUE)
      # Make a basic volcano plot
      with(res, plot(res$AveExpr.x, -log10(res$P.Value), pch=20, main="Volcano plot (slope pval )",
                     xlab=c("Log2_AvgFC"),ylab=c("-Log10(Pval)"),
                     xlim=c(-abs(max(res$AveExpr.x)+1),abs(max(res$AveExpr.x)+1))))
      
      # Add colored points: red if padj<0.05, orange of log2FC>1, green if both)
      s=subset(res, P.Value< input$pvalsli )
      with(s, points(s$AveExpr.x, -log10(s$P.Value), pch=20, col="red"))
      
      s=subset(res, abs(res$AveExpr.x)>input$avthrssli)
      with(s, points(s$AveExpr.x, -log10(s$P.Value), pch=20, col="orange"))
      
      s=subset(res, P.Value< input$pvalsli & abs(res$AveExpr.x)>input$avthrssli)
      with(s, points(s$AveExpr.x, -log10(s$P.Value), pch=20, col="green"))
      
      # Label points with the textxy function from the calibrate plot
      s=subset(res, P.Value< input$pvalsli & abs(res$AveExpr.x)>input$avthrssli)
      with(s, textxy( s$AveExpr.x, -log10(s$P.Value),  labs=s$GeneID, cex=1)
      )
      legend("bottomleft", title="Legend",cex = 0.7,
             c("Not significant",
               paste("P.Value",input$pvalsli, sep = " "), #red
               paste("AvgFC >", input$avthrssli, sep=""), #orange,
               paste("P.Value", input$pvalsli,"& AvgFC >", input$avthrssli, sep="") #green
             ),
             col=c("black","red","orange","green"),
             horiz=FALSE, pch=c(19))
    }
  })
  
  output$plot9<- renderPlot({
    req(data())
    if(input$modtyp == 'sigmoid'){
      su <- dataMerge()
      print(head(su))
      if(input$datype =='intensity'){
        
        su1 <- su[,1:(input$chans - 1 )]
      }else{
        su1 <- su[,1:(input$chans )]
      }
    } else {
      
      su <- rSu()
      vec <- channels()
      vec <- length(vec)
      
      su1 <- su[,1:(vec)]
      vec.nam <- finalNames()
      vec.nam <- vec.nam[channels()]
      colnames(su)[match('GeneID.x',colnames(su))] <- 'GeneID'
    }
    
    
    plot.new()
    #d3heatmap(su1, Colv = FALSE,labRow = as.character(make.names(su$GeneID,unique = TRUE)), dendrogram = 'row' )
    
    
  })
  
  output$test<- DT::renderDataTable({
    
    fin<- standardNames()
    
    if(length(input$view_vars) == length(fin)){
      
      DT::datatable(data.frame(Original = input$view_vars,Standard = standardNames(), Final = finalNames()))
    }else{
      DT::datatable(data.frame(Error = "Incorrect dimensions", Comments=  "ensure the number of names selected is the same as the number of channels and repeats inputted"))
    }
    
    
  })
  
  ############## Info Boxes
  
  ### P value
  pvalQc <- reactive({
    
    data.merged <- dataMerge2()
    PVal <-  c(sum(data.merged$P.Value <= 0.05),sum(data.merged$P.Value.x <= 0.05),
               sum(data.merged$P.Value.y <= 0.05))
    
    Names = c("Slope", "Intercept", "Quadratic")
    
    
    
    data.frame(Names = Names, PVal = PVal)
    
  })
  
  output$infopvalslo <- renderInfoBox({
    temp <- pvalQc()
    infoBox(
      title = "Slope",paste0(temp[1,2], " p values < 0.05"),color = ifelse(temp[1,2] > 0, "green","orange" ), icon = icon(ifelse(temp[1,2] > 0, "check","warning" ))
    )
  })
  
  output$infopvalint <- renderInfoBox({
    temp <- pvalQc()
    infoBox(
      title = "Intercept",paste0(temp[2,2], " p values < 0.05"),color = ifelse(temp[2,2] > 0, "green","orange" ), icon = icon(ifelse(temp[2,2] > 0, "check","warning" ))
    )
  })
  
  output$infopvalquad <- renderInfoBox({
    temp <- pvalQc()
    infoBox(
      title = "Quadratic",paste0(temp[3,2], " p values < 0.05"),color = ifelse(temp[3,2] > 0, "green","orange" ), icon = icon(ifelse(temp[2,2] > 0, "check","warning" ))
    )
  })
  
  output$corrinfo <- renderInfoBox({
    req(data())
    if(input$modtyp == 'sigmoid'){
      su <- dataMerge()
    }else{
      su <- rSu()
      
    }
    cmat <-cor(su[,channels()],use="pairwise", method = "pearson")
    cmat[upper.tri(cmat)]<- 0
    cmat<- melt(cmat)
    
    
    infoBox(
      title = NULL,value = ifelse(nrow(cmat[cmat$value < 0, ]) == 0, "No Anti-Correlation between Channels","Anti Correlation between some Channels" ),
      color = ifelse(nrow(cmat[cmat$value < 0, ]) == 0, "green","orange" ),
      icon = icon(ifelse(nrow(cmat[cmat$value < 0, ]) == 0, "check","warning" ))
    )
    
  })
  
  output$siginfodt <- renderInfoBox({
    
    if(input$modtyp == 'lin'){
      return(NULL)
    } else {
      
      conc<- sigConc()
      if(input$datype == 'intensity'){
        
        
        top<-15 #max prot to plot
        
        data_merged_2 <- dataMerge2()
        
        # RB50<-na.omit(data_merged_2[data_merged_2$RB50Err < as.numeric(summary(data_merged_2$RB50Err)[5]) & data_merged_2$RB50Pval<0.05 & data_merged_2$predX1-data_merged_2$predX9 >0 & data_merged_2$predX1 <= 100,])
        RB50 <- data.frame(na.omit(data_merged_2[data_merged_2$RB50Err < as.numeric(summary(data_merged_2$RB50Err)[5]) & data_merged_2$RB50Pval < 0.05
                                                 & data_merged_2$predX1-data_merged_2[,paste("predX",(input$chans - 1),sep = "")] >0 & data_merged_2$predX1 <= 100,]))
        
        
        RB50_ordered<- na.omit(RB50[order(RB50$RB50Pval, decreasing = FALSE),][1:top,])
        
        
      } else{
        pred.names <- sigPredNames()
        final.Names <- finalNames()
        top<-15 #max prot to plot
        
        data_merged_2 <- dataMerge2()
        
        # RB50<-na.omit(data_merged_2[data_merged_2$RB50Err < as.numeric(summary(data_merged_2$RB50Err)[5]) & data_merged_2$RB50Pval<0.05 & data_merged_2$predX1-data_merged_2$predX9 >0 & data_merged_2$predX1 <= 100,])
        RB50 <- data.frame(na.omit(data_merged_2[data_merged_2$RB50Err < as.numeric(summary(data_merged_2$RB50Err)[5]) & data_merged_2$RB50Pval < 0.05
                                                 & data_merged_2$predX1-data_merged_2[,paste("predX",input$chans,sep = "")] >0 & data_merged_2$predX1 <= 100,]))
        
        
        RB50_ordered<- na.omit(RB50[order(RB50$RB50Pval, decreasing = FALSE),][1:top,])
        
      }
      
      infoBox(
        title = "RB50",paste0(nrow(RB50_ordered), " Significant RB50"),color = ifelse(nrow(RB50_ordered) > 0, "green","orange" ), icon = icon(ifelse(nrow(RB50_ordered) > 0, "check","warning" ))
      )
      
      
    }
    
  })
  
  output$siginfoslop <- renderInfoBox({
    
    if(input$modtyp == 'lin'){
      return(NULL)
    } else {
      
      conc<- sigConc()
      if(input$datype == 'intensity'){
        
        top<-15 #max prot to plot
        
        conc<- sigConc()
        pred.names <- paste0('predX',1:(input$chans -1))
        final.Names <- paste0('rep1_C',0:(input$chans - 2))
        
        data_merged_2 <- dataMerge2()
        
        #Here make the subselections for using the ggplot functions SLOPE
        slope<-na.omit(data_merged_2[data_merged_2$SlopePval<0.05 ,])
        slope_ordered<-na.omit(slope[order(slope$SlopePval, decreasing = FALSE),][1:top,])
        
        
      } else{
        
        top<-15 #max prot to plot
        
        conc<- sigConc()
        pred.names <- sigPredNames()
        final.Names <- finalNames()
        
        data_merged_2 <- dataMerge2()
        
        #Here make the subselections for using the ggplot functions SLOPE
        slope<-na.omit(data_merged_2[data_merged_2$SlopePval<0.05 ,])
        slope_ordered<-na.omit(slope[order(slope$SlopePval, decreasing = FALSE),][1:top,])
        
      }
      
      infoBox(
        title = "Slope Coefficient",paste0(nrow(slope_ordered), " Significant Slope"),color = ifelse(nrow(slope_ordered) > 0, "green","orange" ), icon = icon(ifelse(nrow(slope_ordered) > 0, "check","warning" ))
      )
      
      
    }
    
  })
  
  output$siginfodiff <- renderInfoBox({
    
    if(input$modtyp == 'lin'){
      return(NULL)
    } else {
      
      conc<- sigConc()
      if(input$datype == 'intensity'){
        
        
        data_merged_2 <- dataMerge2()
        pred.names <- paste0('predX',1:(input$chans -1))
        final.Names <- paste0('rep1_C',0:(input$chans - 2))
        
        topperc<-30 #difference in % between top and bottom
        # data_merged_2 <- dataMerge2()
        diffinter<- data_merged_2[(data_merged_2$predX1 -data_merged_2[,paste("predX",(input$chans-1),sep = "")]) > topperc & data_merged_2$predX1 <= 100, ]
        
        
        
      } else{
        conc<- sigConc()
        
        pred.names <- sigPredNames()
        final.Names <- finalNames()
        
        topperc<-30 #difference in % between top and bottom
        data_merged_2 <- dataMerge2()
        diffinter<- data_merged_2[(data_merged_2$predX1 -data_merged_2[,paste("predX",input$chans,sep = "")]) > topperc & data_merged_2$predX1 <= 100, ]
        
        
      }
      
      infoBox(
        title = "Top - Bottom Difference",paste0(nrow(diffinter), " Significant Difference"),color = ifelse(nrow(diffinter) > 0, "green","orange" ), icon = icon(ifelse(nrow(diffinter) > 0, "check","warning" ))
      )
      
      
    }
    
  })
  ############################
  # SIGMOIDAL PLOTS
  ############################
  
  
  output$DiffTopBottom <- renderPlot({
    
    if(input$modtyp != 'sigmoid'){
      plot.new()
      legend('topleft', c("Linear fit applied, no sigmoidal plots available"),bty = 'n')
    }else{
      if(input$datype == 'intensity'){
        data_merged_2 <- dataMerge2()
        conc<- sigConc()
        pred.names <- paste0('predX',1:(input$chans -1))
        final.Names <- paste0('rep1_C',0:(input$chans - 2))
        
        topperc<-30 #difference in % between top and bottom
        # data_merged_2 <- dataMerge2()
        diffinter<- data_merged_2[(data_merged_2$predX1 -data_merged_2[,paste("predX",(input$chans-1),sep = "")]) > topperc & data_merged_2$predX1 <= 100, ]
        
        
        if(nrow(diffinter)>0){
          Diff_Top_bottom_pred<-shape_for_ggplot_pred(diffinter,log2(conc),pred.names)
          Diff_Top_bottom_perc<-shape_for_ggplot_perc(diffinter,log2(conc),final.Names)
          what<-c("(Top - Bottom) >")
          
          Diff_Top_bottom<-ggplot()+
            geom_line(data = Diff_Top_bottom_pred, aes(x=x,y=value, colour=factor(Diff_Top_bottom_pred$GeneID)), size = 1) +
            geom_point(data = Diff_Top_bottom_perc, aes(x=x,y=value, colour=Diff_Top_bottom_perc$GeneID)) +
            labs(title=paste(what,topperc,sep=""))
          
          
        }else{
          Diff_Top_bottom<-ggplot()+
            labs(title=paste("No significant Top-Bottom >" ,topperc,"%","\n","has been found", sep=""))
        }
        
        print(Diff_Top_bottom)
      }
      
      else{
        conc<- sigConc()
        
        pred.names <- sigPredNames()
        final.Names <- finalNames()
        
        topperc<-30 #difference in % between top and bottom
        data_merged_2 <- dataMerge2()
        diffinter<- data_merged_2[(data_merged_2$predX1 -data_merged_2[,paste("predX",input$chans,sep = "")]) > topperc & data_merged_2$predX1 <= 100, ]
        
        
        
        
        if(nrow(diffinter)>0){
          Diff_Top_bottom_pred<-shape_for_ggplot_pred(diffinter,log2(conc),pred.names)
          Diff_Top_bottom_perc<-shape_for_ggplot_perc(diffinter,log2(conc),final.Names)
          what<-c("(Top - Bottom) >")
          
          Diff_Top_bottom<-ggplot()+
            geom_line(data = Diff_Top_bottom_pred, aes(x=x,y=value, colour=factor(Diff_Top_bottom_pred$GeneID)), size = 1) +
            geom_point(data = Diff_Top_bottom_perc, aes(x=x,y=value, colour=Diff_Top_bottom_perc$GeneID)) +
            labs(title=paste(what,topperc,sep=""))
          
          
        }else{
          Diff_Top_bottom<-ggplot()+
            labs(title=paste("No significant Top-Bottom >" ,topperc,"%","\n","has been found", sep=""))
        }
        
        print(Diff_Top_bottom)
      }
    }
    
    
  })
  
  output$Slope_pl <- renderPlot({
    
    if(input$modtyp != 'sigmoid'){
      plot.new()
      legend('topleft', c("Linear fit applied, no sigmoidal plots available"),bty = 'n')
    }else{
      
      if(input$datype == 'intensity'){
        top<-15 #max prot to plot
        
        conc<- sigConc()
        pred.names <- paste0('predX',1:(input$chans -1))
        final.Names <- paste0('rep1_C',0:(input$chans - 2))
        
        data_merged_2 <- dataMerge2()
        
        #Here make the subselections for using the ggplot functions SLOPE
        slope<-na.omit(data_merged_2[data_merged_2$SlopePval<0.05 ,])
        slope_ordered<-na.omit(slope[order(slope$SlopePval, decreasing = FALSE),][1:top,])
        if(nrow(slope_ordered)>0){
          slope_pred<-shape_for_ggplot_pred(slope_ordered,log10(conc),pred.names)
          slope_perc<- shape_for_ggplot_perc(slope_ordered,log10(conc),final.Names)
          what<-c("Slope (p.val) ")
          Slope_pl<-ggplot()+
            geom_line(data = slope_pred, aes(x=x,y=value, colour=factor(slope_pred$GeneID)), size = 1) +
            geom_point(data = slope_perc, aes(x=x,y=value,colour=slope_perc$GeneID))+
            labs(title=paste(what,"Top",top,sep=""))
          
        }else{Slope_pl<-ggplot()+
          labs(title="No significant Sigmoidal Slope has been found")
        }
        print(Slope_pl)
      } else{
        top<-15 #max prot to plot
        
        conc<- sigConc()
        pred.names <- sigPredNames()
        final.Names <- finalNames()
        
        data_merged_2 <- dataMerge2()
        
        #Here make the subselections for using the ggplot functions SLOPE
        slope<-na.omit(data_merged_2[data_merged_2$SlopePval<0.05 ,])
        slope_ordered<-na.omit(slope[order(slope$SlopePval, decreasing = FALSE),][1:top,])
        if(nrow(slope_ordered)>0){
          slope_pred<-shape_for_ggplot_pred(slope_ordered,log10(conc),pred.names)
          slope_perc<- shape_for_ggplot_perc(slope_ordered,log10(conc),final.Names)
          what<-c("Slope (p.val) ")
          Slope_pl<-ggplot()+
            geom_line(data = slope_pred, aes(x=x,y=value, colour=factor(slope_pred$GeneID)), size = 1) +
            geom_point(data = slope_perc, aes(x=x,y=value,colour=slope_perc$GeneID))+
            labs(title=paste(what,"Top",top,sep=""))
          
        }else{Slope_pl<-ggplot()+
          labs(title="No significant Sigmoidal Slope has been found")
        }
        print(Slope_pl)
      }
    }
    
    
  })
  
  output$RB50 <- renderPlot({
    
    if(input$modtyp != 'sigmoid'){
      plot.new()
      legend('topleft', c("Linear fit applied, no sigmoidal plots available"),bty = 'n')
    }else{
      if(input$datype =='intensity'){
        conc<- sigConc()
        
        pred.names <- paste0('predX',1:(input$chans -1))
        final.Names <- paste0('rep1_C',0:(input$chans - 2))
        
        top<-15 #max prot to plot
        
        data_merged_2 <- dataMerge2()
        
        # RB50<-na.omit(data_merged_2[data_merged_2$RB50Err < as.numeric(summary(data_merged_2$RB50Err)[5]) & data_merged_2$RB50Pval<0.05 & data_merged_2$predX1-data_merged_2$predX9 >0 & data_merged_2$predX1 <= 100,])
        RB50 <- data.frame(na.omit(data_merged_2[data_merged_2$RB50Err < as.numeric(summary(data_merged_2$RB50Err)[5]) & data_merged_2$RB50Pval < 0.05
                                                 & data_merged_2$predX1-data_merged_2[,paste0('predX',(input$chans - 1))] >0 & data_merged_2$predX1 <= 100,]))
        
        
        RB50_ordered<- na.omit(RB50[order(RB50$RB50Pval, decreasing = FALSE),][1:top,])
        
        if(nrow(RB50_ordered)>0){
          RB50_pred<-shape_for_ggplot_pred(RB50_ordered,log10(conc),pred.names)
          RB50_perc<-shape_for_ggplot_perc(RB50_ordered,log10(conc),final.Names)
          what<-c("RB50 (p.val) ")
          RB50_pl<-ggplot()+
            geom_line(data = RB50_pred, aes(x=x,y=value, colour=factor(RB50_pred$GeneID)), size = 1) +
            geom_point(data = RB50_perc, aes(x=x,y=value,colour=RB50_perc$GeneID))+
            labs(title=paste(what,"Top",top,sep=""))
          print(RB50_pl)
        }else{
          RB50_pl<-ggplot()+
            labs(title="No significant RB50 has been found")
          print(RB50_pl)
        }
        
      }else {
        conc<- sigConc()
        pred.names <- sigPredNames()
        final.Names <- finalNames()
        top<-15 #max prot to plot
        
        data_merged_2 <- dataMerge2()
        
        # RB50<-na.omit(data_merged_2[data_merged_2$RB50Err < as.numeric(summary(data_merged_2$RB50Err)[5]) & data_merged_2$RB50Pval<0.05 & data_merged_2$predX1-data_merged_2$predX9 >0 & data_merged_2$predX1 <= 100,])
        RB50 <- data.frame(na.omit(data_merged_2[data_merged_2$RB50Err < as.numeric(summary(data_merged_2$RB50Err)[5]) & data_merged_2$RB50Pval < 0.05
                                                 & data_merged_2$predX1-data_merged_2$predX9 >0 & data_merged_2$predX1 <= 100,]))
        
        
        RB50_ordered<- na.omit(RB50[order(RB50$RB50Pval, decreasing = FALSE),][1:top,])
        
        if(nrow(RB50_ordered)>0){
          RB50_pred<-shape_for_ggplot_pred(RB50_ordered,log10(conc),pred.names)
          RB50_perc<-shape_for_ggplot_perc(RB50_ordered,log10(conc),final.Names)
          what<-c("RB50 (p.val) ")
          RB50_pl<-ggplot()+
            geom_line(data = RB50_pred, aes(x=x,y=value, colour=factor(RB50_pred$GeneID)), size = 1) +
            geom_point(data = RB50_perc, aes(x=x,y=value,colour=RB50_perc$GeneID))+
            labs(title=paste(what,"Top",top,sep=""))
        }else{
          RB50_pl<-ggplot()+
            labs(title="No significant RB50 has been found")
        }
        print(RB50_pl)
      }
    }
    
  })
  
  
  
  # Linear elements of sigmoidal obselete
  
  # output$Linear_pl1 <- renderPlot({
  #
  #   if(input$modtyp != 'sigmoid'){
  #     plot.new()
  #     legend('topleft', c("Linear fit applied, no sigmoidal plots available"),bty = 'n')
  #   }else{
  #     conc<- sigConc()
  #
  #     pred.names <- sigPredNames()
  #     final.Names <- finalNames()
  #     top<-15 #max prot to plot
  #
  #     data_merged_2 <- dataMerge2()
  #
  #
  #     linere<-data_merged_2[data_merged_2$RB50Pval=="lm-fit:intercept.slope.quadratic" & data_merged_2$predX1 > data_merged_2[,paste("predX",input$chans,sep = "")] & data_merged_2$predX1 <= 100 & data_merged_2$Lower_LimitPval < 0.05,]
  #
  #     if(nrow(linere)>0){
  #       lin_pred<-shape_for_ggplot_pred(linere,log10(conc),pred.names)
  #       lin_perc<-shape_for_ggplot_perc(linere,log10(conc),final.Names)
  #       what<-c("Lm model Slope Pval< 0.05 \n (failed dose-resp.) ")
  #
  #       Linear_pl1<-ggplot()+
  #         geom_line(data = lin_pred, aes(x=x,y=value, colour=factor(lin_pred$GeneID)), size = 1) +
  #         geom_point(data = lin_perc, aes(x=x,y=value,colour=lin_perc$GeneID))+
  #         labs(title=paste(what,top,sep=""))
  #
  #
  #     }else{
  #       Linear_pl1<-ggplot()+
  #         labs(title="No significant Lm slope has been found")
  #     }
  #
  #     print(Linear_pl1)
  #   }
  # })
  #
  # output$Linear_pl2 <- renderPlot({
  #
  #   if(input$modtyp != 'sigmoid'){
  #     plot.new()
  #     legend('topleft', c("Linear fit applied, no sigmoidal plots available"),bty = 'n')
  #   }else{
  #     conc<- sigConc()
  #     pred.names <- sigPredNames()
  #     final.Names <- finalNames()
  #     top<-15 #max prot to plot
  #
  #     data_merged_2 <- dataMerge2()
  #
  #
  #     linere<-data_merged_2[data_merged_2$RB50Pval=="lm-fit:intercept.slope.quadratic" & data_merged_2$predX1 > data_merged_2[,paste("predX",input$chans,sep = "")] & data_merged_2$predX1 <= 100 & data_merged_2$Upper_LimitPval < 0.05,]
  #
  #     if(nrow(linere)>0){
  #       lin_pred<-shape_for_ggplot_pred(linere,log10(conc),pred.names)
  #       lin_perc<-shape_for_ggplot_perc(linere,log10(conc),final.Names)
  #       what<-c("Lm model Quadratic Pval< 0.05 \n (failed dose-resp.) ")
  #
  #       Linear_pl2<-ggplot()+
  #         geom_line(data = lin_pred, aes(x=x,y=value, colour=factor(lin_pred$GeneID)), size = 1) +
  #         geom_point(data = lin_perc, aes(x=x,y=value,colour=lin_perc$GeneID))+
  #         labs(title=paste(what,top,sep=""))
  #
  #
  #     }else{
  #       Linear_pl2<-ggplot()+
  #         labs(title="No significant Lm Quadratic has been found")
  #     }
  #
  #
  #     print(Linear_pl2)
  #   }
  #
  # })
  #
  output$testmerge <- DT::renderDataTable({
    
    # a<- intData()
    a<- dataMerge2()
    # a <- indexmatrix()
    
    # a <- rSu()
    
    
    
    if(input$modtyp == 'sigmoid'){
      if(input$incpd == TRUE){
        DT::datatable(data.frame(GeneID = a$GeneID, RB50 = a$RB50Coef, RB50pval = a$RB50Pval,Topminusbottom = a$Top_minus_min ,correctedRB50 = a$correctedRB50, depletionConst = a$depletionConstant, Kinase = a$Kinase),
                      options = list(scrollX = TRUE)  )
      }else{
        DT::datatable(data.frame(GeneID = a$GeneID, RB50 = a$RB50Coef, RB50pval = a$RB50Pval,Topminusbottom = a$Top_minus_min , Kinase = a$Kinase),
                      options = list(scrollX = TRUE)  )
      }
      
    } else{
      DT::datatable(data.frame(GeneID = a$GeneID.x, Intercept = signif(a$P.Value), Slope = signif(a$P.Value.x), Quadtratic = signif(a$P.Value.y), Kinase = a$Kinase),
                    options = list(scrollX = TRUE)  )
    }
    
    
    
  })
  
  
  output$kintab <- DT::renderDataTable({
    data.merged <- dataMerge()
    
    proteome<-as.vector(toupper(data.merged$GeneID))
    DT::datatable(data.frame(GeneID = intersect(proteome,kinome)))
  }
  
  )
  
  #################
  ## OUTPUT download
  #################
  
  output$peprmv<- downloadHandler(
    filename = function() {
      paste("removedPep", '.csv', sep='')
    },
    content = function(file) {
      write.csv(pepdwn(), file)
    }
  )
  
  output$report <- downloadHandler(
    # For PDF output, change this to "report.pdf"
    filename = "report.html",
    content = function(file) {
      # Copy the report file to a temporary directory before processing it, in
      # case we don't have write permissions to the current working dir (which
      # can happen when deployed).
      tempReport <- file.path(tempdir(), "report.Rmd")
      file.copy("report.Rmd", tempReport, overwrite = TRUE)
      
      # Set up parameters to pass to Rmd document
      params <- list(chans = input$chans, reps = input$reps, data = dataMerge(), data2 = dataMerge2(), channel = channels(), avthrsli = input$avthrssli,
                     pvalsli = input$pvalsli, indexmat = indexmatrix(), RSu = rSu(), finNam = finalNames(), datype = input$datype, sigmodin = input$modtyp, concen = sigConc(), sigPred = sigPredNames()
                     ,
                     vennip = input$venninput, kin = kinome1
                     # , upVenn <- uploadVenn()
      )
      
      
      # Knit the document, passing in the `params` list, and eval it in a
      # child of the global environment (this isolates the code in the document
      # from the code in this app).
      rmarkdown::render(tempReport, output_file = file,
                        params = params,
                        envir = new.env(parent = globalenv())
      )
    }
  )
  
  DownloadData<- reactive({
    data.merged <- dataMerge2()
    if(input$modtyp != 'sigmoid'){
      colnames(data.merged)[match(c('P.Value', 'adj.P.Val', 'P.Value.x', 'adj.P.Val.x', 'P.Value.y', 'adj.P.Val.y'),colnames(data.merged))] <- c( 'P.Value_slope', 'adj.P.Val_slope', 'P.Value_intercept', 'adj.P.Val_intercept','P.Value_quadratic', 'adj.P.Val_quadratic')
    }
    print(head(data.merged))
    data.merged
  })
  
  output$downloadData <- downloadHandler(
    
    filename = function() {
      paste(input$dataset, '.csv', sep='')
    },
    content = function(file) {
      write.csv(DownloadData(), file)
    }
  )
  
  ## rest elements -- doesn't get rendered
  
  output$testkd<- DT::renderDataTable({
    
    # kd<- rKd()
    #
    # DT::datatable(data.frame(kd))
    # a<- dataMerge2()
    # a<- rSu()
    # a<- uniprotGene()
    a<- DownloadData()
    DT::datatable(a,
                  options = list(scrollX = TRUE) )
  })
  
  output$sessionInfo <- renderPrint({
    capture.output(sessionInfo())
  })
  
})

# Run the application


shinyApp(ui = ui, server = server)

Try the Doscheda package in your browser

Any scripts or data that you put into this service are public.

Doscheda documentation built on Nov. 8, 2020, 5:37 p.m.