Nothing
#######################################################################
#
# Package Name: HIBAG
# Description:
# HIBAG -- HLA Genotype Imputation with Attribute Bagging
#
# HIBAG R package, HLA Genotype Imputation with Attribute Bagging
# Copyright (C) 2015-2018 Xiuwen Zheng (zhengx@u.washington.edu)
# All rights reserved.
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
##########################################################################
#
# Association Tests
#
# Define a generic function
hlaAssocTest <- function(hla, ...)
{
UseMethod("hlaAssocTest", hla)
}
# Print out the results
.assoc_show <- function(mat, pval.idx, show.all)
{
v <- mat
p <- as.matrix(v[, pval.idx])
x <- sprintf("%.3f ", p); dim(x) <- dim(p)
x[p < 0.001] <- "<0.001*"
flag <- (p >= 0.001) & (p <= 0.05)
flag[is.na(flag)] <- FALSE
if (any(flag, na.rm=TRUE))
x[flag] <- gsub(" ", "*", x[flag], fixed=TRUE)
flag <- !is.finite(p)
if (any(flag, na.rm=TRUE))
x[flag] <- "."
v[, pval.idx] <- x
s <- format(v, digits=4L)
s[is.na(v)] <- "."
for (i in pval.idx)
s[, i] <- as.character(s[, i])
f <- apply(p, 1L, function(x) any(x <= 0.05, na.rm=TRUE))
v <- NULL
if (sum(f) > 0L)
{
v <- rbind(v, s[f, ])
if ((sum(f) < nrow(s)) & (sum(!f) > 0L) & show.all)
v <- rbind(v, "-----"=rep("", ncol(s)))
}
if ((sum(!f) > 0L) & show.all)
v <- rbind(v, s[!f, ])
print(v)
invisible()
}
##########################################################################
# Fit statistical models in assocation tests for HLA alleles
#
# Association tests are applied to HLA classical alleles
hlaAssocTest.hlaAlleleClass <- function(hla, formula, data,
model=c("dominant", "additive", "recessive", "genotype"),
model.fit=c("glm"), prob.threshold=NaN, use.prob=FALSE, showOR=FALSE,
verbose=TRUE, ...)
{
stopifnot(inherits(hla, "hlaAlleleClass"))
stopifnot(inherits(formula, "formula"))
model <- match.arg(model)
model.fit <- match.arg(model.fit)
stopifnot(is.logical(use.prob), length(use.prob)==1L)
stopifnot(is.logical(showOR), length(showOR)==1L)
if (missing(data))
{
data <- environment(formula)
} else if (is.data.frame(data))
{
if (nrow(data) != nrow(hla$value))
stop("'hla' and 'data' must have the same length.")
}
stopifnot(is.numeric(prob.threshold), length(prob.threshold)==1L)
if (is.finite(prob.threshold))
{
if (!is.data.frame(data))
stop("'data' should be a data.frame, if 'prob.threshold' is used.")
p <- hla$value$prob
if (is.null(p))
stop("No posterior probability in 'hla' ('hla$value$prob' should be available).")
flag <- (p >= prob.threshold)
flag[is.na(flag)] <- FALSE
hla <- hlaAlleleSubset(hla, flag)
data <- data[flag, ]
if (verbose)
{
m <- sum(!flag)
cat("Exclude ", m, " individual", .plural(m),
" from the study due to the call threshold (",
prob.threshold, ")\n", sep="")
}
}
# formula
fa <- format(formula)
s <- unlist(strsplit(fa, "~", fixed=TRUE))
if (length(s) != 2L)
stop("Invalid `formula`: ", fa)
if (s[1L] == "")
stop("No dependent variable in `formula`: ", fa)
yv <- trimws(s[1L])
y <- data[[yv]]
if (is.null(y))
stop(sprintf("Dependent variable '%s' does not exist in `data`.", yv))
else if (length(y) != nrow(hla$value))
stop(sprintf("'hla' and '%s' must have the same length.", yv))
if (isTRUE(use.prob))
{
if (is.null(hla$value$prob))
stop("There is no posterior probability.")
}
# need proportion (%)
flag <- is.factor(y)
if (flag)
{
flag <- (nlevels(y) == 2L)
if (flag) yy <- as.integer(y) - 1L
} else {
if (all(y %in% c(0,1), na.rm=TRUE))
{
y <- as.factor(y)
flag <- (nlevels(y) == 2L)
if (flag) yy <- as.integer(y) - 1L
}
}
# ans
allele <- with(hla$value, hlaUniqueAllele(c(allele1, allele2)))
# genotype distribution: dominant, additive, recessive, genotype
mat <- mat2 <- NULL
for (i in seq_along(allele))
{
s <- allele[i]
suppressWarnings(switch(model,
dominant = {
v <- with(hla$value, (allele1==s) | (allele2==s))
x <- c(sum(v==FALSE, na.rm=TRUE), sum(v==TRUE, na.rm=TRUE))
if (flag)
b <- sapply(c(FALSE, TRUE), function(i) mean(yy[v==i], na.rm=TRUE))
},
additive = {
x <- with(hla$value, c(
sum(c(allele1, allele2) != s, na.rm=TRUE),
sum(c(allele1, allele2) == s, na.rm=TRUE)))
if (flag)
{
z <- with(hla$value, c(allele1, allele2) == s)
b <- c(mean(c(yy,yy)[!z], na.rm=TRUE),
mean(c(yy,yy)[z], na.rm=TRUE))
}
},
recessive = {
v <- with(hla$value, (allele1==s) & (allele2==s))
x <- c(sum(v==FALSE, na.rm=TRUE), sum(v==TRUE, na.rm=TRUE))
if (flag)
b <- sapply(c(FALSE, TRUE), function(i) mean(yy[v==i], na.rm=TRUE))
},
genotype = {
v <- with(hla$value, (allele1==s) + (allele2==s))
x <- c(sum(v==0L, na.rm=TRUE), sum(v==1L, na.rm=TRUE),
sum(v==2L, na.rm=TRUE))
if (flag)
b <- sapply(0:2, function(i) mean(yy[v==i], na.rm=TRUE))
}
))
if (flag)
{
b <- round(b * 100.0, 1)
b[!is.finite(b)] <- NaN
mat2 <- rbind(mat2, b)
}
mat <- rbind(mat, x)
}
switch(model,
dominant = { colnames(mat) <- c("[-/-]", "[-/h,h/h]") },
additive = { colnames(mat) <- c("[-]", "[h]") },
recessive = { colnames(mat) <- c("[-/-,-/h]", "[h/h]") },
genotype = { colnames(mat) <- c("[-/-]", "[-/h]", "[h/h]") }
)
ans <- as.data.frame(mat)
rownames(ans) <- allele
pidx <- NULL
if (!is.null(mat2))
{
colnames(mat2) <- paste0("%.", colnames(mat))
ans <- cbind(ans, mat2)
}
# chi-sq tests
if (is.factor(y))
{
w1 <- w2 <- w3 <- rep(NaN, length(allele))
yy <- y
if (model == "additive") yy <- rep(yy, 2L)
for (i in seq_along(allele))
{
s <- allele[i]
x <- switch(model,
dominant = with(hla$value, (allele1==s) | (allele2==s)),
additive = with(hla$value, c(allele1, allele2) == s),
recessive = with(hla$value, (allele1==s) & (allele2==s)),
genotype = {
v <- with(hla$value, (allele1==s) + (allele2==s)) + 1L
attr(v, "levels") <- c("-/-", "-/h", "h/h")
attr(v, "class") <- "factor"
v
}
)
x <- as.factor(x)
a <- try(v <- suppressWarnings(chisq.test(x, yy)), silent=TRUE)
if (!inherits(a, "try-error"))
{
w1[i] <- v$statistic
w2[i] <- v$p.value
}
a <- try(v <- fisher.test(x, yy), silent=TRUE)
if (!inherits(a, "try-error"))
w3[i] <- a$p.value
}
ans$chisq.st <- w1
ans$chisq.p <- w2
ans$fisher.p <- w3
pidx <- c(pidx, ncol(ans)-1L, ncol(ans))
} else {
if (model == "dominant")
{
mat <- matrix(NaN, nrow=length(allele), ncol=3L)
colnames(mat) <- c("avg.[-/-]", "avg.[-/h,h/h]", "ttest.p")
for (i in seq_along(allele))
{
s <- allele[i]
x <- with(hla$value, (allele1==s) | (allele2==s))
mat[i, 1L] <- suppressWarnings(mean(y[x==FALSE], na.rm=TRUE))
mat[i, 2L] <- suppressWarnings(mean(y[x==TRUE], na.rm=TRUE))
a <- try(v <- t.test(y[x==FALSE], y[x==TRUE]), silent=TRUE)
if (!inherits(a, "try-error"))
mat[i, 3L] <- v$p.value
}
} else if (model == "recessive")
{
mat <- matrix(NaN, nrow=length(allele), ncol=3L)
colnames(mat) <- c("avg.[-/-,-/h]", "avg.[h/h]", "ttest.p")
for (i in seq_along(allele))
{
s <- allele[i]
x <- with(hla$value, (allele1==s) & (allele2==s))
mat[i, 1L] <- suppressWarnings(mean(y[x==FALSE], na.rm=TRUE))
mat[i, 2L] <- suppressWarnings(mean(y[x==TRUE], na.rm=TRUE))
a <- try(v <- t.test(y[x==FALSE], y[x==TRUE]), silent=TRUE)
if (!inherits(a, "try-error"))
mat[i, 3L] <- v$p.value
}
} else {
mat <- matrix(NaN, nrow=length(allele), ncol=4L)
colnames(mat) <- c("avg.[-/-]", "avg.[-/h]", "avg.[h/h]", "anova.p")
for (i in seq_along(allele))
{
s <- allele[i]
x <- with(hla$value, (allele1==s) + (allele2==s))
mat[i, 1L] <- suppressWarnings(mean(y[x==0L], na.rm=TRUE))
mat[i, 2L] <- suppressWarnings(mean(y[x==1L], na.rm=TRUE))
mat[i, 3L] <- suppressWarnings(mean(y[x==2L], na.rm=TRUE))
x <- as.factor(x)
a <- try(v <- aov(y ~ x), silent=TRUE)
if (!inherits(a, "try-error"))
{
v <- summary(v)
mat[i, 4L] <- v[[1L]]$`Pr(>F)`[1L]
}
}
}
ans <- cbind(ans, mat)
pidx <- c(pidx, ncol(ans))
}
# regression
vars <- attr(terms(formula), "term.labels")
if (length(vars) > 0L)
{
if (!is.element("h", vars))
{
stop("Independent variable 'h' should be in `formula` ",
"to include HLA genotypes, like '", fa, " + h'.")
}
if (!is.data.frame(data))
stop("'data' should be `data.frame`.")
param <- list(...)
if (verbose)
{
if (is.null(param$family))
{
if (is.factor(y))
cat("Logistic regression")
else
cat("Linear regression")
} else
cat("Regression [", format(param$family)[1L], "]", sep="")
cat(" (", model, " model) with ", length(y), " individual",
.plural(length(y)), ":\n", sep="")
}
mat <- vector("list", length(allele))
summ <- NULL
for (i in seq_along(allele))
{
s <- allele[i]
data$h <- switch(model,
dominant =
as.integer(with(hla$value, (allele1==s) | (allele2==s))),
additive =
with(hla$value, (allele1==s) + (allele2==s)),
recessive =
as.integer(with(hla$value, (allele1==s) & (allele2==s))),
genotype =
as.factor(with(hla$value, (allele1==s) + (allele2==s)))
)
a <- try({
if (is.null(param$family) & is.factor(y))
{
if (!isTRUE(use.prob))
{
m <- glm(formula, data=data, family=binomial, ...)
} else {
prob <- hla$value$prob
m <- glm(formula, data=data, family=binomial, weights=prob, ...)
}
} else {
if (!isTRUE(use.prob))
{
m <- glm(formula, data=data, ...)
} else {
prob <- hla$value$prob
m <- glm(formula, data=data, weights=prob, ...)
}
}
NULL
}, silent=TRUE)
if (!inherits(a, "try-error"))
{
summ <- summary(m)
z <- summ$coefficients
if (nrow(z) > 1L)
{
ci <- confint.default(m)
v <- cbind(z[-1L,1L], ci[-1L,1L], ci[-1L,2L], z[-1L,4L])
v <- c(t(v))
nm <- rownames(z)[-1L]
names(v) <- c(rbind(paste0(nm, ".est"), paste0(nm, ".2.5%"),
paste0(nm, ".97.5%"), paste0(nm, ".pval")))
if (is.factor(y) & isTRUE(showOR))
{
if (model != "genotype")
nm <- c("h.est", "h.2.5%", "h.97.5%")
else
nm <- c("h1.est", "h1.2.5%", "h1.97.5%", "h2.est", "h2.2.5%", "h2.97.5%")
j <- match(nm, names(v))
nm <- names(v)
nm[j] <- paste0(nm[j], "_OR")
v[j] <- exp(v[j])
names(v) <- nm
}
mat[[i]] <- v
}
}
}
if (verbose & !is.null(summ$call))
{
s <- gsub("formula = formula", fa, format(summ$call), fixed=TRUE)
cat(" ", s, "\n", sep="")
}
nm <- NULL
for (i in seq_along(allele))
nm <- c(nm, names(mat[[i]]))
nm <- unique(nm)
if (!is.null(nm))
{
for (i in seq_along(allele))
{
n <- length(mat[[i]])
if (n == 0L)
{
mat[[i]] <- rep(NA, length(nm))
} else {
v <- mat[[i]]
mat[[i]] <- v[match(nm, names(v))]
}
}
mat <- t(matrix(unlist(mat), nrow=length(nm)))
colnames(mat) <- nm
pidx <- c(pidx, ncol(ans) + seq(4L, ncol(mat), 4L))
ans <- cbind(ans, mat)
} else
warning(model.fit, " does not work.", immediate.=TRUE)
} else {
if (verbose) cat(model, "model:\n")
if (isTRUE(use.prob))
{
warning(ifelse(is.factor(y),
"Chi-squared and Fisher's exact tests do not use posterior probabilities.",
"T test or ANOVA does not use posterior probabilities."),
immediate.=TRUE)
}
}
if (verbose)
.assoc_show(ans, pidx, TRUE)
invisible(ans)
}
# Association tests are applied to HLA protein sequences
hlaAssocTest.hlaAASeqClass <- function(hla, formula, data,
model=c("dominant", "additive", "recessive", "genotype"),
model.fit=c("glm"), prob.threshold=NaN, use.prob=FALSE, showOR=FALSE,
show.all=FALSE, verbose=TRUE, ...)
{
stopifnot(inherits(hla, "hlaAASeqClass"))
stopifnot(inherits(formula, "formula"))
model <- match.arg(model)
model.fit <- match.arg(model.fit)
stopifnot(is.logical(use.prob), length(use.prob)==1L)
stopifnot(is.logical(showOR), length(showOR)==1L)
stopifnot(is.logical(show.all), length(show.all)==1L)
if (missing(data))
{
data <- environment(formula)
} else if (is.data.frame(data))
{
if (nrow(data) != nrow(hla$value))
stop("'hla' and 'data' must have the same length.")
}
stopifnot(is.numeric(prob.threshold), length(prob.threshold)==1L)
if (is.finite(prob.threshold))
{
if (!is.data.frame(data))
stop("'data' should be a data.frame, if 'prob.threshold' is used.")
p <- hla$value$prob
if (is.null(p))
stop("No posterior probability in 'hla' ('hla$value$prob' should be available).")
flag <- (p >= prob.threshold)
flag[is.na(flag)] <- FALSE
hla <- hlaAlleleSubset(hla, flag)
data <- data[flag, ]
if (verbose)
{
m <- sum(!flag)
cat("Exclude ", m, " individual", .plural(m),
" from the study due to the call threshold (",
prob.threshold, ")\n", sep="")
}
}
# formula
fa <- format(formula)
s <- unlist(strsplit(fa, "~", fixed=TRUE))
if (length(s) != 2L)
stop("Invalid `formula`: ", fa)
if (s[1L] == "")
stop("No dependent variable in `formula`: ", fa)
yv <- trimws(s[1L])
y <- data[[yv]]
if (is.null(y))
stop(sprintf("Dependent variable '%s' does not exist in `data`.", yv))
else if (length(y) != nrow(hla$value))
stop(sprintf("'hla' and '%s' must have the same length.", yv))
if (isTRUE(use.prob))
{
if (is.null(hla$value$prob))
stop("There is no posterior probability.")
}
# need proportion (%)
flag <- is.factor(y)
if (flag)
{
flag <- (nlevels(y) == 2L)
if (flag) yy <- as.integer(y) - 1L
} else {
if (all(y %in% c(0,1), na.rm=TRUE))
{
y <- as.factor(y)
flag <- (nlevels(y) == 2L)
if (flag) yy <- as.integer(y) - 1L
}
}
# regression
vars <- attr(terms(formula), "term.labels")
if (length(vars) > 0L)
{
if (!is.element("h", vars))
{
stop("Independent variable 'h' should be in `formula` ",
"to include HLA genotypes, like '", fa, " + h'.")
}
if (!is.data.frame(data))
stop("'data' should be `data.frame`.")
}
if (is.factor(y))
{
if (length(vars) > 0L)
{
param <- list(...)
if (verbose)
{
if (is.null(param$family))
cat("Logistic regression")
else
cat("Regression [", format(param$family)[1L], "]", sep="")
cat(" (", model, " model) with ", length(y), " individual",
.plural(length(y)), ":\n", sep="")
}
}
y2 <- rep(y, 2L)
matseq <- .matrix_sequence(c(hla$value$allele1, hla$value$allele2))
pos <- 1L - hla$start.position + 1L
z <- apply(matseq, 1L, FUN=function(x)
{
x[x == 42] <- NA # 42 = '*'
xx <- as.factor(x)
xl <- as.integer(levels(xx))
s <- rawToChar(as.raw(xl))
a <- try(v <- fisher.test(xx, y2), silent=TRUE)
pos <<- pos + 1L
i <- pos + hla$start.position - 2L
rv <- data.frame(
pos = pos - 1L,
num = sum(!is.na(x)),
ref = substr(hla$reference, i, i),
poly = paste(unlist(strsplit(s, "", fixed=TRUE)), collapse=","),
fisher.p = ifelse(inherits(a, "try-error"), NaN, a$p.value),
stringsAsFactors=FALSE)
if (length(vars) > 0L)
{
if (length(xl) == 2L) xl <- xl[1L]
a1 <- x[seq.int(1L, length(x)/2)]
a2 <- x[seq.int(length(x)/2 + 1L, length(x))]
tv <- NULL
for (k in xl)
{
if (k == 45L)
{ # -, reference, - vs. others
data$h <- switch(model,
dominant = as.integer((a1!=k) | (a2!=k)),
additive = (a1!=k) + (a2!=k),
recessive = as.integer((a1!=k) & (a2!=k)),
genotype = as.factor((a1!=k) + (a2!=k))
)
} else {
data$h <- switch(model,
dominant = as.integer((a1==k) | (a2==k)),
additive = (a1==k) + (a2==k),
recessive = as.integer((a1==k) & (a2==k)),
genotype = as.factor((a1==k) + (a2==k))
)
}
a <- try({
if (!isTRUE(use.prob))
{
m <- glm(formula, data=data, family=binomial, ...)
} else {
prob <- hla$value$prob
m <- glm(formula, data=data, family=binomial,
weights=prob, ...)
}
NULL
}, silent=TRUE)
if (!inherits(a, "try-error"))
{
summ <- summary(m)
z <- summ$coefficients
if (nrow(z) > 1L)
{
ci <- confint.default(m)
v <- cbind(z[-1L,1L], ci[-1L,1L], ci[-1L,2L],
z[-1L,4L])
v <- c(t(v))
nm <- rownames(z)[-1L]
names(v) <- c(rbind(paste0(nm, ".est"),
paste0(nm, ".2.5%"), paste0(nm, ".97.5%"),
paste0(nm, ".pval")))
if (isTRUE(showOR))
{
if (model != "genotype")
nm <- c("h.est", "h.2.5%", "h.97.5%")
else
nm <- c("h1.est", "h1.2.5%", "h1.97.5%",
"h2.est", "h2.2.5%", "h2.97.5%")
j <- match(nm, names(v))
nm <- names(v)
nm[j] <- paste0(nm[j], "_OR")
v[j] <- exp(v[j])
names(v) <- nm
}
tv <- rbind(tv, v)
}
}
}
if (!is.null(tv))
{
if (!is.data.frame(tv))
{
rownames(tv) <- NULL
tv <- as.data.frame(tv)
}
xl <- sapply(as.integer(levels(xx)), function(x)
rawToChar(as.raw(x)))
tv <- cbind(
amino.acid = sapply(seq_along(xl), function(i)
if (xl[i] == "-")
paste(xl[i], "vs", paste(xl[-i], collapse=","))
else
paste(paste(xl[-i], collapse=","), "vs", xl[i])
),
tv, stringsAsFactors=FALSE)
}
n <- 0L
if (!is.null(tv)) n <- nrow(tv)
if (n > 0L)
{
if (n > 1L)
{
rv <- as.data.frame(sapply(rv, function(x) rep(x, n),
simplify=FALSE), stringsAsFactors=FALSE)
}
rv <- cbind(rv, tv)
}
}
rv
})
ans <- data.frame(
pos = unlist(sapply(z, function(x) x$pos)),
num = unlist(sapply(z, function(x) x$num)),
ref = unlist(sapply(z, function(x) x$ref)),
poly = unlist(sapply(z, function(x) x$poly)),
fisher.p = unlist(sapply(z, function(x) x$fisher.p)),
stringsAsFactors=FALSE)
n <- max(lengths(z))
pidx <- c(5L)
if (n > 5L)
{
for (i in 6L:n)
{
ans <- cbind(ans, unlist(sapply(z, function(x)
if (i <= ncol(x)) x[,i] else NA
)))
}
names(ans) <- names(z[[match(n, lengths(z))]])
pidx <- c(pidx, seq.int(7L, n, 4L) + 3L)
}
if (verbose)
.assoc_show(ans, pidx, show.all)
} else {
stop(sprintf("Dependent variable '%s' should be factor.", yv))
}
invisible(ans)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.