Defines functions gseaScoresBatchParallel

Documented in gseaScoresBatchParallel

##This function computes enrichment scores for both input 'geneList' 
##and their permutations for multiple gene sets in parallel
gseaScoresBatchParallel <- function(geneList, geneNames.perm, 
	collectionOfGeneSets, exponent = 1, nPermutations = 1000) {
	##check arguments
		stop("'geneNames.perm' should be a matrix!\n")
		stop("The No of columns of 'geneNames.perm' should be equal to 'nPermutations'!\n")	
	##local function for computation of gsea scores with a single core
	gseaScoresBatchLocal <- function(geneList, geneNames.perm, geneSet, 
		exponent, nPermutations) {	
		geneList.names <- names(geneList)

		##The geneSet should be a subset of the gene universe, i.e. we 
		##keep only those element of the gene set that appear in the 
		geneSet <- intersect(geneList.names, geneSet)
        ##Compute the size of the gene set and of the genelist
        nh <- length(geneSet)
        N <- length(geneList)
        ES <- rep(0, nPermutations+1)
		Phit <- matrix(0, nrow = N, ncol = nPermutations+1)
		Pmiss <- Phit
		runningES <- NULL
		if(nh > N)
			stop("Gene Set is larger than Gene List")

		hits <- matrix(FALSE, nrow = N, ncol = nPermutations+1) 	
		hits[which(!is.na(match(geneNames.perm, geneSet)))] <- TRUE	
		hits <- matrix(hits, ncol = nPermutations+1, byrow = FALSE)		
		if(sum(hits[,1]) > 0) {
			junk <- sapply(1:(nPermutations+1), function(i) 
				Phit[which(hits[, i]), i] <<- 
					abs(geneList[which(hits[, i])])^exponent)	
			NR <- colSums(Phit)		
			Pmiss[which(!hits)] <- 1/(N-nh)		
			Pmiss <- sapply(1:(nPermutations+1), function(i) 
				cumsum(Pmiss[, i]))
			Phit <- sapply(1:(nPermutations+1), function(i) 
				cumsum(Phit[, i])/NR[i])		
			runningES <- Phit-Pmiss		
			ESrange <- sapply(1:(nPermutations+1), function(i) 
				range(runningES[, i]))
			ES <- sapply(1:(nPermutations+1), function(i) 
			if(is.list(ES)) ES <- unlist(ES)
		##Return the relevant information according to mode		
		ES <- list(scoresObserved = ES[1], scoresperm = ES[2:(nPermutations+1)])
	#parallel computing
	scores <- parSapply(getOption("cluster"), 1:length(collectionOfGeneSets), 
			function(i) {
				gseaScoresBatchLocal(geneList, geneNames.perm = geneNames.perm, 
				geneSet = as.integer(collectionOfGeneSets[[i]]), exponent = exponent, 
				nPermutations = nPermutations)

Try the HTSanalyzeR package in your browser

Any scripts or data that you put into this service are public.

HTSanalyzeR documentation built on Oct. 31, 2019, 7:10 a.m.