R/KEGG_function.R

Defines functions plot_pathway_cor download_latest_pathway find_enriched_pathway col_by_value pieGlyph2 plot_pie plot_polygon plot_pathway plot_profile parse_XMLfile download_KEGGfile

Documented in col_by_value download_KEGGfile download_latest_pathway find_enriched_pathway parse_XMLfile plot_pathway plot_pathway_cor plot_profile

###############################################################################
# Data: 2014-02-10
# Author: Shilin Zhao ([email protected])
###############################################################################

#' @importMethodsFrom AnnotationDbi as.list
#' @name pho_sites_count
#' @title number of phosphorylation sites quantified for each gene
#' @description This data set is a data.frame with number of phosphorylation sites quantified for each gene in the analysis.
#' @docType data
#' @usage pho_sites_count
#' @source Olsen, J.V., et al. (2010) Quantitative phosphoproteomics reveals 
#' widespread full phosphorylation site occupancy during mitosis, Sci Signal, 3, ra3.
NULL
#' @name pro_pho_expr
#' @title expression profiles in proteome and phosphoproteome
#' @description This data set is from a previously published data of proteome and phosphoproteome analysis in different cell phase.
#' The column 1-6 are proteome data and column 7-12 are phosphoproteome data in this data.frame. The 6 time points are G1, G1/S, Early S, Late S, G2, Mitosis.
#' @docType data
#' @usage pro_pho_expr
#' @source Olsen, J.V., et al. (2010) Quantitative phosphoproteomics reveals 
#' widespread full phosphorylation site occupancy during mitosis, Sci Signal, 3, ra3.
NULL
##' download_KEGGfile
##' 
##' The function download XML files and png files from KEGG website to local disk
##' 
##' If pathway_id is set as 'all', all KEGG pathway ids in KEGG.db package will be used and downloaded from KEGG website
##' 
##' @param pathway_id the KEGG pathway id, such as '00010'
##' @param species the species id in KEGG database, 'hsa' means human, 'mmu' means mouse, 'rno' means rat, etc
##' @param target_dir the local directory where the downloaded files are saved
##' @importFrom KEGG.db KEGGPATHID2EXTID
##' @import RCurl
##' @import utils
##' @export
##' @examples download_KEGGfile(pathway_id="00010",species='hsa')
download_KEGGfile<-function(pathway_id="00010",species='hsa',target_dir=getwd()) {
	if (pathway_id=='all') { #download files for all pathway baesd on KEGG.db package
#		require(KEGG.db)
		keggpathway2gene <- as.list(KEGGPATHID2EXTID)
		pathway_id<-names(keggpathway2gene)[grep(species,names(keggpathway2gene))]
	} else {
		pathway_id<-paste(species,pathway_id,sep="")
	}
	
	downloadKeggFile<-function(pathway_id="00010",target_dir=getwd()) {
		sourceUrl<-paste("http://www.genome.jp/kegg-bin/download?entry=",pathway_id,'&format=kgml',sep="")
		targetFileName=paste(target_dir,"/",pathway_id,".xml",sep="")
		fileContent<-getURL(sourceUrl, httpheader = c('Referer'='http://www.genome.jp/kegg-bin/show_pathway?org_name=hsa'))
		writeLines(fileContent,targetFileName)
	}
	
	pathway_id_map<-gsub(species,"",pathway_id)
	for (x in 1:length(pathway_id)) {
		print (paste("Downloading files: ",x,"/",length(pathway_id),sep=""))
		try(downloadKeggFile(pathway_id[x]))
#		download.file(paste("http://www.genome.jp/kegg-bin/download?entry=",pathway_id[x],'&format=kgml',sep=""),paste(target_dir,"/",pathway_id[x],".xml",sep=""))
		try(download.file(paste("http://www.genome.jp/kegg/pathway/",species,"/",pathway_id[x],'.png',sep=""),paste(target_dir,"/",pathway_id[x],".png",sep=""),mode="wb"))
		try(download.file(paste("http://www.genome.jp/kegg/pathway/map/","map",pathway_id_map[x],'.png',sep=""),paste(target_dir,"/map",pathway_id_map[x],".png",sep=""),mode="wb"))
	}
}

##' parse_XMLfile
##' 
##' The function parses KEGG XML (KGML) files
##' 
##' This function will parse the KEGG XML (KGML) file. Then a matrix with genes in this pathway and related infomations will be returned. This matrix can be used for plot the expression profiles on the pathway figure.
##' 
##' @inheritParams download_KEGGfile
##' @param database_dir the directory where the XML files and png files are located
##' @importFrom XML xmlTreeParse getNodeSet xmlGetAttr
##' @export
##' @return a matrix containing genes in this pathway, and their names, locations etc, which could be used in the function plot_profile as param KEGG_database
##' @examples XML2database<-parse_XMLfile(pathway_id="04110",species="hsa",database_dir=system.file("extdata",package="KEGGprofile"))
parse_XMLfile<-function(pathway_id,species,database_dir=getwd()) {
	#get pathway gene and their location in the pic
	#except three global maps
	if (pathway_id=="01100" | pathway_id=="01110" | pathway_id=="01120") {
		print(paste("Skip global maps:",pathway_id,sep=""))
		return(NULL)
	}
#	require(XML)
	inter1<-xmlTreeParse(paste(database_dir,"/",species,pathway_id,".xml",sep=""),useInternalNodes=TRUE)
	inter2<-getNodeSet(inter1,"//entry")
	inter3<-lapply(inter2,  function(xxx) xmlGetAttr(xxx,  "name"))
	inter4<-lapply(inter2,  function(xxx) xmlGetAttr(xxx,  "type"))
	inter5<-sapply(inter2,  function(xxx) getNodeSet(xxx,".//graphics"))
	inter_graphic_type<-sapply(inter5,  function(xxx) xmlGetAttr(xxx,  "type"))
	inter6<-sapply(inter5,  function(xxx) xmlGetAttr(xxx,  "x"))
	inter7<-sapply(inter5,  function(xxx) xmlGetAttr(xxx,  "y"))
	inter8<-sapply(inter5,  function(xxx) xmlGetAttr(xxx,  "width"))
	inter9<-sapply(inter5,  function(xxx) xmlGetAttr(xxx,  "height"))
	inter10<-sapply(inter5,  function(xxx) xmlGetAttr(xxx,  "name"))
	result<-NULL
	for (i in 1:length(inter4)) {
		if ((inter4[[i]]=="gene" | inter4[[i]]=="compound") & inter_graphic_type[[i]]!="line") {
			temp<-strsplit(inter3[[i]]," ")[[1]]
#			temp<-gsub("cpd:","",temp)
			name<-strsplit(inter10[[i]],",")[[1]][1]
			name<-gsub('\\.\\.\\.',"",name)
			for (n in 1:length(temp)) {
				result<-rbind(result,c(temp[n],inter6[[i]],inter7[[i]],inter8[[i]],inter9[[i]],name))
			}
		}
	}
	result[,1]<-gsub(paste(species,":",sep=""),'',result[,1])
	return(result)
}

##' plot_profile
##' 
##' The function plot gene expression profiles on KEGG pathway maps
##' 
##' There are two visualization methods to represent gene expression profiles: 'background' and 'lines'.
##' The first one is applicable for analysis with only one sample or one type of data, which divides the gene polygon into several sub-polygons to represent different time points.
##' And each sub-polygon has a specific background color to represent expression changes in that time point. The second method plots lines with different colors in the gene polygon to represent different samples or different types of data.
##' The dynamic changes of lines mean the profiles of genes in different time points.
##' 
##' @param gene_expr the matrix for gene expression, row.names should be NCBI gene ID, such as 67040, 93683
##' @param pathway_name the species id and KEGG pathway id, such as 'hsa00010'
##' @param KEGG_database the matrix returned by function parse_XMLfile, which contains genes in this pathway, and their names, locations etc
##' @param result_name the name of figure file generated by KEGGprofile. The default name is pathway_name+'_profile_'+type+'.png', such as 'hsa04110_profile_lines.png'
##' @param groups a character used to indicate expression values from different types of samples
##' @param bg_col background color for gene rectangles in the pathway map
##' @param line_col line color for expression in different samples in the pathway map, valid when type='lines'
##' @param text_col the colors for text in the pathway map. A color matrix generated by function \code{\link{col_by_value}} can be used here
##' @param border_col border color for gene rectangles in the pathway map. A color matrix generated by function \code{\link{col_by_value}} can be used here
##' @param text_cex cex for text in the pathway map. A color matrix generated by function \code{\link{col_by_value}} can be used here
##' @param magnify the coefficient used to magnify the gene rectangles
##' @param type the type of pathway map visulization, could be 'bg' or 'lines'. Default is 'bg'. See also 'Details'
##' @param pathway_min The pathways with number of annotated genes less than pathway_min would be ignored
##' @param genes_kept methods used for choosing genes when several genes corresponding to one location in pathway map. Default is 'foldchange', which kept the gene with largest fold changes. 'first' kept the first gene. 'random' chosed gene random. 'var' kept the gene with largest variation. 'abs' kept the gene with largest absolute value
##' @param max_dist The expression changes that represented by the distance from the bottom to the top of gene rectangle, valid when type='lines'. This param is used to ensure the dynamic changes of lines in different gene polygon represent equal variation. It would be calculated from the maximum changes of genes in this pathway by default. If max_dist=NA, then the lines would be plotted from top to bottom in each gene rectangle
##' @param lwd The line width when type='lines' 
##' @param speciesRefMap Logical, use the species specific figure as reference map. if set as FALSE, the reference pathway figure without species information will be used
##' @inheritParams parse_XMLfile
##' @importFrom png readPNG
##' @importFrom TeachingDemos subplot
##' @import grDevices
##' @import graphics
##' @import stats
##' @export
##' @return a matrix containing genes maped in this pathway, and their names, expressions 
##' @examples XML2database<-parse_XMLfile(pathway_id="04110",species="hsa",database_dir=system.file("extdata",package="KEGGprofile"))
##' data(pro_pho_expr)
##' temp<-plot_profile(pro_pho_expr,pathway_name="hsa04110",KEGG_database=XML2database,line_col=c("brown1","seagreen3"),groups=c(rep("Proteome ",6),rep("Phosphoproteome ",6)),magnify=1.2,database_dir=system.file("extdata",package="KEGGprofile"),max_dist=5)
plot_profile<-function(gene_expr,pathway_name,result_name=paste(pathway_name,"_profile_",type,".png",sep=""),KEGG_database,groups,bg_col="white",text_col="black",line_col,border_col="grey",text_cex=0.25,magnify=1,type=c('lines','bg'),pathway_min=5,genes_kept=c('foldchange','first','random','var','abs'),species='hsa',database_dir=getwd(),max_dist,lwd=1.2,speciesRefMap=TRUE) {
	type <- if (missing(type))
				"lines" else match.arg(type)
	if (type == "lines" & ncol(gene_expr)<=1) {
		print("When type=='lines', You should have more than one time points")
	}
	genes_kept <- if (missing(genes_kept)) 
				"foldchange" else match.arg(genes_kept)
	showCpdLegend<-F
	if (missing(groups) || is.null(groups)) groups<-rep("Expression",ncol(gene_expr))
	groups<-factor(groups,levels=unique(groups),ordered=F)
	if (missing(line_col)) line_col<-rainbow(length(unique(groups)))
	if (is.matrix(bg_col) | is.data.frame(bg_col)) {} else {
		bg_col<-matrix(rep(bg_col,nrow(gene_expr)),ncol=1)
		row.names(bg_col)<-row.names(gene_expr)
	}
	if (is.matrix(border_col) | is.data.frame(border_col)) {} else {
		border_col<-matrix(rep(border_col,nrow(gene_expr)),ncol=1)
		row.names(border_col)<-row.names(gene_expr)
	}
	if (is.matrix(text_col) | is.data.frame(text_col)) {} else {
		text_col<-matrix(rep(text_col,nrow(gene_expr)),ncol=1)
		row.names(text_col)<-row.names(gene_expr)
	}
	return_expr<-NULL
	
	#the number of annotated genes
	genes<-intersect(KEGG_database[,1],row.names(gene_expr))
	if (length(genes)<pathway_min) {
		print (paste("The genes mapped in pathway ",pathway_name," were less than ",pathway_min,", skip this pathway.",sep=""))
		return()
	}
	
	#plot KEGG pic
#	require(png)
#	require(TeachingDemos)
	if (speciesRefMap) {
		img  <-  readPNG(paste(database_dir,"/",pathway_name,".png",sep=""))
	} else {
		img  <-  readPNG(paste(database_dir,"/",gsub("[a-zA-Z]+","map",pathway_name),".png",sep=""))
	}
	width<-ncol(img)
	height<-nrow(img)
	err_x_location<-1
	err_y_location<-0
	png(result_name,width=width*2,height=height*2,res=600)
	par(yaxs="i")
	par(xaxs="i")
	par(mar=c(0,0,0,0))
	plot(c(0,width),c(0,height),  type='n',xlab="",ylab="")
	rasterImage(img,  0,  0,  width,  height,interpolate=F)
	
	x=y=NULL #useless, just for R CMD check
	#plot gene profile in KEGG pic
	result_genes<-as.data.frame(KEGG_database[which(KEGG_database[,1] %in% genes),,drop=FALSE],stringsAsFactors=F,drop=FALSE)
	colnames(result_genes)<-c("genes","x","y","width","height","name")
	result_genes<-transform(result_genes, x = as.numeric(x), y = as.numeric(y),width = as.numeric(width),height = as.numeric(height))
	if (missing(max_dist) & type == "lines") {
		max_dist<-max(apply(matrix(gene_expr[result_genes[,1],]),1,function(x) range(x,na.rm=T)[2]-range(x,na.rm=T)[1]))
	}
	findUnique<-apply(result_genes[,2:3],1,function(x) paste(x,collapse=" "))
	temp<-split(as.data.frame(result_genes,stringsAsFactors=F),findUnique)
	for (xx in 1:length(temp)) {
		#for genes in same location, only keep one
		if (length(temp[[xx]][,1])>1) {
			if (genes_kept=="foldchange") {
				ChosedGene<-temp[[xx]][which.max(apply(data.frame(gene_expr[temp[[xx]][,1],]),1,function(x) range(x,na.rm=T)[2]-range(x,na.rm=T)[1])),1]
			} else if (genes_kept=="first") {
				ChosedGene<-temp[[xx]][1,1]
			} else if (genes_kept=="random") {
				ChosedGene<-sample(temp[[xx]][,1],1)
			} else if (genes_kept=="var") {
				ChosedGene<-temp[[xx]][which.max(apply(data.frame(gene_expr[temp[[xx]][,1],]),1,var)),1]
			} else if (genes_kept=="abs") {
				ChosedGene<-temp[[xx]][which.max(apply(data.frame(gene_expr[temp[[xx]][,1],]),1,function(x) max(abs(x)))),1]
			}
			ChosedGene<-temp[[xx]][which(temp[[xx]][,1]==ChosedGene),]
		} else {ChosedGene<-temp[[xx]]}
		if (length(grep("^cpd",as.character(ChosedGene[,1])))) { #cpd
			showCpdLegend<-T
			if (type == "lines") {
				ChosedGeneProfile<-as.matrix(gene_expr[as.character(ChosedGene[,1]),])
				ChosedGeneProfile<-sapply(split(ChosedGeneProfile,groups),function(x) x)		
				gene_dist<-gene_expr[as.character(ChosedGene[,1]),]
				gene_dist<-range(gene_dist,na.rm=T)[2]-range(gene_dist,na.rm=T)[1]
				if (is.na(max_dist) | gene_dist==0) {y_ratio<-1} else {
					y_ratio<-gene_dist/max_dist
					if (y_ratio>1) {y_ratio<-1}
				}
				pie_radius<-4*magnify+4*magnify*(ChosedGeneProfile-min(ChosedGeneProfile))/gene_dist
				pie_col<-rep(line_col,nrow(pie_radius))
				pie_radius<-as.vector(t(pie_radius))
				plot_pie(ChosedGene=ChosedGene,ChosedGeneProfile=rep(1,nrow(ChosedGeneProfile)*ncol(ChosedGeneProfile)),height=height,err_x_location=err_x_location,err_y_location=err_y_location,magnify=magnify,radius=pie_radius,col=pie_col,lty=0)
			} else {
#				plot_pie(ChosedGene=ChosedGene,ChosedGeneProfile=abs(as.matrix(gene_expr[as.character(ChosedGene[,1]),])),height=height,err_x_location=err_x_location,err_y_location=err_y_location,magnify=magnify,col=bg_col)
				plot_pie(ChosedGene=ChosedGene,ChosedGeneProfile=rep(1,length(ChosedGene)),height=height,err_x_location=err_x_location,err_y_location=err_y_location,magnify=magnify,col=bg_col)
			}
		} else { #gene
			i_max<-ncol(bg_col)
			for (i in 1:i_max) {
				plot_polygon(ChosedGene=ChosedGene,i=i,i_max=i_max,col=bg_col,height=height,err_x_location=err_x_location,err_y_location=err_y_location,magnify=magnify)
			}
			if (type == "lines") {
				ChosedGeneProfile<-as.matrix(gene_expr[as.character(ChosedGene[,1]),])
				ChosedGeneProfile<-sapply(split(ChosedGeneProfile,groups),function(x) x)		
				gene_dist<-gene_expr[as.character(ChosedGene[,1]),]
				gene_dist<-range(gene_dist,na.rm=T)[2]-range(gene_dist,na.rm=T)[1]
				if (is.na(max_dist) | gene_dist==0) {y_ratio<-1} else {
					y_ratio<-gene_dist/max_dist
					if (y_ratio>1) {y_ratio<-1}
				}
				old_par <- par(no.readonly = TRUE)
				subplot(matplot(ChosedGeneProfile,main="",type="l",xlab="",ylab="",xaxt="n",yaxt="n",bty="n",col=line_col,lty=1,lwd=lwd),c(ChosedGene[,2]-ChosedGene[,4]/2*magnify+err_x_location,ChosedGene[,2]+ChosedGene[,4]*magnify/2+err_x_location),c(height-ChosedGene[,3]-ChosedGene[,5]*y_ratio/2*magnify-err_y_location,height-ChosedGene[,3]+ChosedGene[,5]*y_ratio/2*magnify-err_y_location))
				par(old_par)
			}
			plot_polygon(ChosedGene=ChosedGene,col=as.data.frame(NULL),i=1,i_max=1,height=height,err_x_location=err_x_location,err_y_location=err_y_location,magnify=magnify,border=border_col[as.character(ChosedGene[,1]),1],lty=1,lwd=0.5)
			
			text(ChosedGene[,2],height-ChosedGene[,3],labels=ChosedGene[,6],cex=text_cex,col=text_col[as.character(ChosedGene[,1]),1])
		}
		return_expr<-rbind(return_expr,c(ChosedGene[,1],ChosedGene[,6],gene_expr[as.character(ChosedGene[,1]),]))
	}
	if (type == "lines") {
		legend("topright",legend=unique(groups),lwd=1,col=line_col,bty="n",cex=0.3)
		if (!(is.na(max_dist))) {
			polygon(c(width-66,width-20,width-20,width-66),c(height-60,height-60,height-77,height-77),border="grey")
			text(width-43,height-68.5,round(max_dist,2),cex=text_cex)
		}
	}
	if (showCpdLegend) {
		if (type == "lines") {
			groupNumber<-length(unique(groups))
			numberInEachGroup<-ncol(gene_expr)/groupNumber
			cpdLegendLabels<-colnames(gene_expr)[rep((1:numberInEachGroup),each=groupNumber)+(0:(groupNumber-1)*numberInEachGroup)]
			pieGlyph2(x=rep(1,ncol(gene_expr)), xpos=width-80,ypos=height-120,radius=15*magnify,labels=cpdLegendLabels,lwd=0.2,col=line_col,cex=text_cex)
		} else {
			pieGlyph2(x=rep(1,ncol(gene_expr)), xpos=width-80,ypos=height-60,radius=15*magnify,labels=colnames(gene_expr),lwd=0.5,col="white",cex=text_cex)
		}
	}
	dev.off()
	print (paste("The figure was generated in ",result_name,sep=""))
	colnames(return_expr)<-c("Gene","Name",colnames(gene_expr))
	return(unique(return_expr))
}

##' plot_pathway
##' 
##' A wrapper for function download_KEGGfile, parse_XMLfile and plot_profile
##' 
##' This wrapper function is developed to make the visualization process more easier.
##' Firstly the existence of XML file and png file would be checked, if not, the download_KEGGfile function would be used to download the files.
##' Then the parse_XMLfile function would be used to parse the XML file.
##' At last the plot_profile function would be used to generate the pathway map.
##' 
##' @inheritParams plot_profile
##' @inheritParams parse_XMLfile
##' @param ... any other Arguments for function plot_profile
##' @export
##' @seealso \code{\link{download_KEGGfile}}, \code{\link{parse_XMLfile}}, \code{\link{plot_profile}}
##' @examples data(pro_pho_expr)
##' data(pho_sites_count)
##' #type='lines'
##' col<-col_by_value(pho_sites_count,col=colorRampPalette(c('white','khaki2'))(4),breaks=c(0,1,4,10,Inf))
##' temp<-plot_pathway(pro_pho_expr,bg_col=col,line_col=c("brown1","seagreen3"),groups=c(rep("Proteome ",6),rep("Phosphoproteome ",6)),magnify=1.2,species='hsa',database_dir=system.file("extdata",package="KEGGprofile"),pathway_id="04110",max_dist=5)
##' #type='bg'
##' pho_expr<-pro_pho_expr[,7:12]
##' temp<-apply(pho_expr,1,function(x) length(which(is.na(x))))
##' pho_expr<-pho_expr[which(temp==0),]
##' col<-col_by_value(pho_expr,col=colorRampPalette(c('green','black','red'))(1024),range=c(-6,6))
##' temp<-plot_pathway(pho_expr,type="bg",bg_col=col,text_col="white",magnify=1.2,species='hsa',database_dir=system.file("extdata",package="KEGGprofile"),pathway_id="04110")
##' #Compound and gene data
##' set.seed(124)
##' testData1<-rbind(rnorm(6),rnorm(6),rnorm(6),rnorm(6),rnorm(6),rnorm(6),rnorm(6),rnorm(6))
##' row.names(testData1)<-c("4967","55753","1743","8802","47","50","cpd:C15972","cpd:C16255")
##' colnames(testData1)<-c("Control0","Control2","Control5","Sample0","Sample2","Sample5")
##' temp<-plot_pathway(testData1,type="lines",line_col=c("brown1","seagreen3"),groups=c(rep("Control",3),rep("Sample",3)),magnify=1.2,species='hsa',database_dir=system.file("extdata",package="KEGGprofile"),pathway_id="00020",max_dist=2)
##' testData2<-testData1[,4:6]-testData1[,1:3]
##' col<-col_by_value(testData2,col=colorRampPalette(c('green','black','red'))(1024),range=c(-2,2))
##' temp<-plot_pathway(testData2,type="bg",bg_col=col,text_col="white",magnify=1.2,species='hsa',database_dir=system.file("extdata",package="KEGGprofile"),pathway_id="00020")
plot_pathway<-function(gene_expr,line_col,groups,pathway_id="00010",species="hsa",pathway_min=5,database_dir=getwd(),speciesRefMap=TRUE,...) {
	if ((!file.exists(paste(database_dir,"/",species,pathway_id,".xml",sep=""))) | (!file.exists(paste(database_dir,"/",species,pathway_id,".png",sep=""))) | (!file.exists(paste(database_dir,"/map",pathway_id,".png",sep="")))) {download_KEGGfile(pathway_id=pathway_id,species=species,target_dir=database_dir)}
	XML2data<-parse_XMLfile(pathway_id=pathway_id,species=species,database_dir=database_dir)
	if (is.null(XML2data)) {return()}
	return_expr<-plot_profile(gene_expr=gene_expr,KEGG_database=XML2data,groups=groups,line_col=line_col,pathway_name=paste(species,pathway_id,sep=""),database_dir=database_dir,pathway_min=pathway_min,speciesRefMap=speciesRefMap,...)
	return(return_expr)
}

plot_polygon<-function(ChosedGene,i,i_max,col,height,err_x_location,err_y_location,magnify,border=F,...) {
	polygon(c(ChosedGene[,2]-ChosedGene[,4]/2*magnify+ChosedGene[,4]/i_max*(i-1)*magnify+err_x_location,ChosedGene[,2]-ChosedGene[,4]/2*magnify+ChosedGene[,4]/i_max*i*magnify+err_x_location,ChosedGene[,2]-ChosedGene[,4]/2*magnify+ChosedGene[,4]/i_max*i*magnify+err_x_location,ChosedGene[,2]-ChosedGene[,4]/2*magnify+ChosedGene[,4]/i_max*(i-1)*magnify+err_x_location),
			c(height-ChosedGene[,3]-ChosedGene[,5]/2*magnify-err_y_location,height-ChosedGene[,3]-ChosedGene[,5]/2*magnify-err_y_location,height-ChosedGene[,3]+ChosedGene[,5]/2*magnify-err_y_location,height-ChosedGene[,3]+ChosedGene[,5]/2*magnify-err_y_location)
			,col=col[as.character(ChosedGene[,1]),i],border=border,...)
}

plot_pie<-function(ChosedGeneProfile,ChosedGene,height,col=NULL,err_x_location,err_y_location,magnify,radius=ChosedGene[,4]*magnify,...) {
	if (is.null(col)) {col<-col[as.character(ChosedGene[,1]),]}
	pieGlyph2(x=ChosedGeneProfile, xpos=ChosedGene[,2]+err_x_location,ypos=height-ChosedGene[,3]-err_y_location,radius=radius,labels="",lwd=0.2,col=col,...)
}

pieGlyph2<-function (x, xpos, ypos, labels = names(x), edges = 200, radius = 0.8, clockwise=T,init.angle = if (clockwise) 90 else 0,
		density = NULL, angle = 45, col = NULL, border = NULL, lty = NULL, lwd = NULL,
		main = NULL, ...) 
{
	if (!is.numeric(x) || any(is.na(x) | x <= 0)) 
		stop("pie: `x' values must be positive.")
	if (is.null(labels)) 
		labels <- as.character(1:length(x))
	x <- c(0, cumsum(x)/sum(x))
	dx <- diff(x)
	nx <- length(dx)
	if (is.null(col)) 
		col <- if (is.null(density)) 
					c("lightblue", "mistyrose", "lightcyan", "lavender", 
							"cornsilk", "white")
				else par("fg")
	if (!is.null(col)) 
		col <- rep(col, length.out = nx)
	if (!is.null(border)) 
		border <- rep(border, length.out = nx)
	if (!is.null(lty)) 
		lty <- rep(lty, length.out = nx)
	if (!is.null(lwd)) 
		lwd <- rep(lwd, length.out = nx)
	if (!is.null(angle)) 
		angle <- rep(angle, length.out = nx)
	if (!is.null(density)) 
		density <- rep(density, length.out = nx)
	
	if (length(radius)==1) {
		radius<-rep(radius,nx)
	}
	
	for (i in 1:nx) {
		n <- max(2, floor(edges * dx[i]))
		
		twopi <- if (clockwise) 
					-2 * pi
				else 2 * pi
		t2p <- twopi * seq(x[i], x[i + 1], length = n)+ init.angle * pi/180
#		xc <- c(cos(t2p), 0) * radius + xpos
#		yc <- c(sin(t2p), 0) * radius + ypos
		xc <- c(cos(t2p), 0) * radius[i] + xpos
		yc <- c(sin(t2p), 0) * radius[i] + ypos
		polygon(xc, yc, density = density[i], angle = angle[i], 
				border = border[i], col = col[i], lty = lty[i],lwd=lwd[i])
		t2p <- twopi * mean(x[i + 0:1])+ init.angle * pi/180
		xc <- cos(t2p) * radius[i] * c(1, 1.1, 1.2) + xpos
		yc <- sin(t2p) * radius[i] * c(1, 1.1, 1.2) + ypos
		lab <- as.character(labels[i])
		if (!is.na(lab) && nzchar(lab)) {
#			lines(xc[1:2], yc[1:2])
			text(xc[3], yc[3], labels[i], xpd = TRUE, adj = ifelse(xc < 
									xpos, 1, ifelse(xc == xpos, 0.5, 0)), ...)
		}
	}
	invisible(NULL)
}

##' col_by_value
##' 
##' The function will transfer a numeric matrix into a matrix of colors, in which the colors represent the values of numeric matrix
##' 
##' A colorbar would also be ploted. The returned colors of the function can be used in function plot_profile. 
##' if breaks not equal to NA, col must have the same length with breaks-1. 
##' 
##' @param x a numeric matrix
##' @param col colors used to represent the values. (See also 'Details')
##' @param range values out of the range will be modified to in the range.
##' @param breaks a numeric vector of three or more cut points giving the number of intervals into which x is to be cut. See also 'Details'
##' @param showColorBar Logical. Indicates display the colorbar or not. The default value is TURE.
##' @export
##' @return a matrix equal to x, but the values were instead by colors.
##' @examples data(pho_sites_count)
##' col<-col_by_value(pho_sites_count,col=colorRampPalette(c('white','khaki2'))(4),breaks=c(0,1,4,10,Inf))
col_by_value<-function(x,col,range=NA,breaks=NA,showColorBar=T) {
	if (is.na(range[1])) {} else {
		x[x<range[1]]<-range[1]
		x[x>range[2]]<-range[2]
	}
	if (is.na(breaks[1])) {
		ff <- seq(min(x),max(x), length=length(col))
		bg2<-apply(as.matrix(as.numeric(unlist(x))),1,function(x) rank(c(ff,x),ties.method ="min")[length(col)+1])
		dens <-matrix(bg2,nrow(x),ncol(x))
		result<-matrix(col[dens],nrow=nrow(x),ncol=ncol(x))
		row.names(result)<-row.names(x)
		if (showColorBar) {
			image(x=1,y=as.matrix(ff),z=t(ff),col=col,xaxt="n",ylab="")
			box()
		}
		return(result)
	} else {
		temp<-cut(as.numeric(unlist(x)),breaks=breaks,include.lowest=T)
		if (length(col)!=length(levels(temp))) {stop("length:col != length: cut result")}
		result<-matrix(col[as.numeric(temp)],nrow=nrow(x),ncol=ncol(x))
		row.names(result)<-row.names(x)
		if (showColorBar) {
			par(mar=c(5,9,2,2))
			image(x=1,y=as.matrix(1:(length(breaks)-1)),z=t(1:(length(breaks)-1)),col=col,xaxt="n",yaxt="n",ylab="",xlab="")
			axis(2, at = 1:(length(breaks)-1),labels=levels(temp),las=1)
			box()
		}
		return(result)
	}
}

##' find_enriched_pathway
##' 
##' The function will map the genes in KEGG pathway database, and then hypergegeometric tests would be used to estimate the significance of enrichment for each pathway
##' 
##' Only the pathways with p value <= returned_pvalue in hypergegeometric tests and number of annotated genes >= returned_genenumber would be taken as enriched and returned.
##' 
##' @param gene a numeric matrix
##' @param returned_pvalue the minimum p value for enriched pathways
##' @param returned_adjpvalue the minimum adjusted p value for enriched pathways
##' @param returned_genenumber the minimum number of annotated genes for enriched pathways
##' @param download_latest logical. Indicate if the function will download the latest pathway/gene link from KEGG website. As the KEGG.db package was not updated for a long time due to the KEGG policy change, we provided this parameter so that the users could get the latest KEGG database.
##' @param refGene the names of genes used as reference. If not provided, all genes in KEGG database will be used.
##' @inheritParams download_KEGGfile
##' @importFrom KEGG.db KEGGPATHID2EXTID KEGGPATHID2NAME
##' @export
##' @return a list with two parts \item{name stastic}{description a matirx containing the pathway IDs of enriched pathways, and their names, p values, number of annotated genes}\item{name detail}{description a list with the genes annotated for each pathway}
##' @examples data(pho_sites_count)
##' #the 300 genes with most phospholation sites quantified
##' genes<-names(rev(sort(pho_sites_count[,1]))[1:300])
##' pho_KEGGresult<-find_enriched_pathway(genes,species='hsa')
find_enriched_pathway<-function(gene,species="hsa",returned_pvalue=0.01,returned_adjpvalue=0.05,returned_genenumber=5,download_latest=FALSE,refGene=NULL) {
	if (download_latest) {
		temp<-download_latest_pathway(species=species)
		keggpathway2gene<-temp$keggpathway2gene
		pathway2name<-temp$pathway2name
	} else {
		keggpathway2gene <- as.list(KEGGPATHID2EXTID)
		keggpathway2gene<-keggpathway2gene[names(keggpathway2gene)[grep(species,names(keggpathway2gene))]]
		pathway2name<-as.list(KEGGPATHID2NAME)
		if (length(keggpathway2gene)==0) {
			cat(paste0("The species can't be found in KEGG.db package and will be downloaded from KEGG website\n"))
			temp<-download_latest_pathway(species=species)
			keggpathway2gene<-temp$keggpathway2gene
			pathway2name<-temp$pathway2name
		}
	}
	if (!is.null(refGene)) {
		keggpathway2gene<-lapply(keggpathway2gene,function(x) x[x %in% refGene])
	}
	
	##map NEED gene to kegg result
	kegg_result<-lapply(keggpathway2gene,function(x) x[x %in% gene])
	##ratio
	kegg_result_length<-unlist(lapply(kegg_result,length))
	keggpathway2gene_length<-unlist(lapply(keggpathway2gene,length))
	ratio<-kegg_result_length/keggpathway2gene_length
	##pvalue
	pvalue<-NULL
	for (x in 1:length(kegg_result_length)) {
		pvalue[x]<-phyper(kegg_result_length[x], keggpathway2gene_length[x], length(unique(unlist(keggpathway2gene)))-kegg_result_length[x], length(unique(unlist(kegg_result))), lower.tail = F)
	}
	pvalueAdj<-p.adjust(pvalue,method="BH")
	pathway_ID<-substr(names(kegg_result_length),4,8)
	names(kegg_result)<-pathway_ID
	result<-data.frame(Pathway_Name=as.character(pathway2name[pathway_ID]),Gene_Found=kegg_result_length,Gene_Pathway=keggpathway2gene_length,Percentage=round(ratio,2),pvalue,pvalueAdj,stringsAsFactors=F)
	row.names(result)<-pathway_ID
	temp<-which(result[,5]<=returned_pvalue & result[,6]<=returned_adjpvalue & result[,2]>=returned_genenumber)
	result<-result[temp,]
	kegg_result<-kegg_result[temp]
	return(list(stastic=result,detail=kegg_result))
}

##' download_latest_pathway
##' 
##' The function will downlaod the latest pathway gene link from KEGG website.
##' 
##' The function will downlaod the latest pathway gene link from KEGG website.
##' 
##' @inheritParams download_KEGGfile
##' @importFrom KEGGREST keggLink keggList
##' @export
##' @return a list with two parts \item{name keggpathway2gene}{description a list with the genes for each pathway}\item{name pathway2name}{description a list with the names for each pathway}
##' @examples \dontrun{download_latest_pathway(species="hsa")}
download_latest_pathway<-function(species) {
	keggpathway2gene<-keggLink(species,"pathway")
	temp<-paste0(species,":")
	keggpathway2gene<-gsub(temp,"",keggpathway2gene)
	names(keggpathway2gene)<-gsub("path:","",names(keggpathway2gene))
	keggpathway2gene<-split(as.character(keggpathway2gene),names(keggpathway2gene))
	pathway2name<-keggList("pathway")
	names(pathway2name)<-gsub("path:map","",names(pathway2name))
	return(list(keggpathway2gene=keggpathway2gene,pathway2name=pathway2name))
}

##' plot_pathway_cor
##' 
##' The function will plot the correlation distributions for each enriched pathway (result from find_enriched_pathway function), and then Wilcoxon tests would be used to estimate the significance of correlations distribution between genes in each pathway and all genes.
##' 
##' 
##' 
##' @inheritParams plot_profile
##' @param kegg_enriched_pathway The returned value from find_enriched_pathway function, the enriched pathways. 
##' @param side a character string specifying the correlation directions interested, must be one of "both" (default), "pos" or "neg".
##' @param alternative a character string specifying the alternative hypothesis, must be one of "two.sided" (default), "greater" or "less". You can specify just the initial letter.
##' @export
##' @return p values for Wilcoxon tests in each pathway
##' @examples data(pro_pho_expr)
##' data(pho_sites_count)
##' genes<-row.names(pho_sites_count)[which(pho_sites_count>=10)]
##' pho_KEGGresult<-find_enriched_pathway(genes,species='hsa')
##' result<-plot_pathway_cor(gene_expr=pro_pho_expr,kegg_enriched_pathway=pho_KEGGresult)
plot_pathway_cor<-function(gene_expr,kegg_enriched_pathway,groups=NULL,side=c("both","pos","neg"),alternative=NULL) {
	side<-match.arg(side)
	if (is.null(groups)) {
		groups<-rep(1,ncol(gene_expr))
		groups[1:(ncol(gene_expr)/2)]<-0
	}
	
	sampleIndGroup1<-which(groups==unique((groups))[1])
	sampleIndGroup2<-which(groups==unique((groups))[2])
	temp<-apply(gene_expr[,sampleIndGroup1],1,function(x) sd(x,na.rm=T))
	gene_expr<-gene_expr[which(temp!=0),]
	temp<-apply(gene_expr[,sampleIndGroup2],1,function(x) sd(x,na.rm=T))
	gene_expr<-gene_expr[which(temp!=0),]
	
	allCor<-apply(gene_expr,1,function(y) cor(y[sampleIndGroup1],y[sampleIndGroup2],use="pa",method="sp"))
	temp1<-sapply(kegg_enriched_pathway[[2]],function(x) apply(gene_expr[intersect(x,row.names(gene_expr)),],1,function(y) cor(y[sampleIndGroup1],y[sampleIndGroup2],use="pa",method="sp")))
	names(temp1)<-kegg_enriched_pathway[[1]][names(temp1),1]
	temp2<-sapply(temp1,function(x) median(x,na.rm=T))
	temp1<-temp1[order(temp2)]
	if (side=="pos") {
		temp1<-temp1[which(sort(temp2)>=0)]
		if (is.null(alternative)) {
			alternative<-"greater"
		}
	} else if (side=="neg") {
		temp1<-temp1[which(sort(temp2)<=0)]
		if (is.null(alternative)) {
			alternative<-"less"
		}
	} else {
		alternative<-"two"
	}
	result<-NULL
	for (i in 1:length(temp1)) {
		result[i]<-wilcox.test(temp1[[i]],allCor[setdiff(names(allCor),names(temp1[[i]])[!is.na(temp1[[i]])])],alternative=alternative)$p.value
	}
	col<-rep("black",length(result))
	col[which(result<=0.05)]<-"red"
	par(mar=c(3,18,1,1))
	boxplot(temp1,las=1,horizontal=T,border=col,lwd=2)
	abline(v=0,lty=2,col="red")
	names(result)<-names(temp1)
	return(result)
}

Try the KEGGprofile package in your browser

Any scripts or data that you put into this service are public.

KEGGprofile documentation built on Nov. 17, 2017, 12:28 p.m.