Nothing
#' Plot RDA results
#'
#' @name plotRDA
#' @aliases plotRDA
#' @export
#'
#' @param object \code{ResultSet}
#' @param pheno data.frame with the variables used to color the samples.
#' @param n_feat Numeric with the number of cpgs to be highlighted. Default: 5.
#' @param main Character with the plot title.
#' @param alpha Numeric with the alpha level for colour transparance. Default: 1; no
#' transparency.
#' @return A plot is generated on the current graphics device.
#' @examples
#' if (require(minfiData)){
#' set <- ratioConvert(mapToGenome(MsetEx[1:10,]))
#' model <- model.matrix(~set$sex)
#' rda <- runRDA(set, model)
#' plotRDA(rda, pheno = data.frame(factor(set$sex)))
#' }
plotRDA <- function(object, pheno = data.frame(), n_feat = 5, main = "RDA plot",
alpha = 1){
stopifnot("RDA" %in% names(object))
ans <- getAssociation(object, rid = "RDA")
if (is.null(dim(pheno))){
pheno <- data.frame(pheno)
}
classes <- vapply(pheno, class, character(1))
pheno[, classes == "character"] <- lapply(pheno[, classes == "character", drop = FALSE], function(x) factor(x))
classes <- vapply(pheno, class, character(1))
factormatrix <- pheno[, classes == "factor", drop = FALSE]
phenocont <- pheno[, classes %in% c("numeric", "integer"), drop = FALSE]
factor <- as.vector(sapply(colnames(factormatrix), function(x) levels(factormatrix[, x])))
if (ncol(factormatrix) > 1){
factormatrix[] <- lapply(factormatrix, as.character)
phenofactor <- as.factor(sapply(rownames(factormatrix),
function(x) paste0(unlist(factormatrix[x, ]), collapse = "")))
} else if (ncol(factormatrix) == 1) {
phenofactor <- factormatrix[, 1]
} else {
phenofactor <- 1
}
r2 <- ans$rdaR2
pval <- ans$pval
if (pval < 1e-3){
pval <- format(signif(pval, 3), scientific = TRUE)
} else{
pval <- round(pval, 3)
}
ans$CCA$centroids <- NULL
if (length(factor)){
ans$CCA$centroids <- t(data.matrix(data.frame(
lapply(colnames(factormatrix), function(x)
getCentroids(ans, factormatrix[ , x])),
check.names = FALSE)))
}
## Remove from biplot variables already present in centroids
ans$CCA$biplot[] <- 0
if (ncol(phenocont)) {
xx <- data.matrix(phenocont)
ans$CCA$biplot <- (1/sqrt(colSums(xx^2))) * crossprod(xx, ans$CCA$u)
}
temp <- ans$CCA$v
if (ncol(temp) == 1){
temp <- cbind(temp, ans$CA$v[ , 1])
}
o1 <- order(abs(temp[,1]), decreasing=TRUE)
o2 <- order(abs(temp[,2]), decreasing=TRUE)
plot(ans, display=c("sp", "cn", "wa"), type="n", main = main, scaling = 3)
filter <- union(o1[1:n_feat], o2[1:n_feat])
text(ans, display = "species", select = filter, cex=0.6, scaling = 3)
## Set points
pch = (15:18)[as.numeric(phenofactor)]
points(ans, display = "wa", col = ggplot2::alpha(as.numeric(phenofactor), alpha),
pch = pch, scaling = 3)
if (length(factor)){
vegan::ordilabel(ans, display = "cn", col = "blue", label = factor)
}
if (ncol(phenocont)){
text(ans, display = "bp", col = "blue", scaling = 3)
}
legend("topleft", c(as.expression(bquote(R^2 ~ "=" ~ .(round(r2, 3)))), paste("p-value:", pval), levels(phenofactor)),
col = c("white", "white", ggplot2::alpha(1:nlevels(phenofactor), alpha)),
cex = 0.8, bty = "n", pch = c(1, 1, c(15:18)[seq_len(nlevels(phenofactor))]))
}
getCentroids <- function(rda, factor){
posRDA <- data.frame(rda$CCA$wa)
splitpos <- split(posRDA, factor)
if (is.null(dim(splitpos[[1]]))){
splitpos <- lapply(splitpos, function(RDA1) data.frame(RDA1))
}
pos <- data.frame(lapply(splitpos, colMeans))
colnames(pos) <- names(splitpos)
colnames(pos) <- paste0(colnames(factor), colnames(pos))
return(pos)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.