Nothing
retrieveDataFromESets_TR <- function(data){
## Merge row annotations and fold changes from different expressionSets
## containing TR data
## Initialize variables to prevent "no visible binding for global
## variable" NOTE by R CMD check:
Protein_ID <- NULL
## 1. Preparation
expNames<- names(data)
list1=list2=list4=list3=list5=list6 = vector(mode="list", length=length(expNames))
names(list1)=names(list2)=names(list4)=names(list3)=names(list5)=names(list6) = expNames
## 2. Iterate over all experiments and retrieve data
for (en in expNames){
setTmp <- data[[en]]
## Split annotation data (stored as featureData in the expressionSets) into
## a data frame of melting curve parameters, model information (boolean
## variables indicating whether sufficient non-missing values were available
## for model fit and whether the model converged successfully).
fDat <- pData(featureData(setTmp))
## Specify column names:
cols1 <- meltCurveParamNames(returnParNames = TRUE,
returnPerformanceInfo = FALSE)
cols2 <- meltCurveParamNames(returnParNames = FALSE,
returnPerformanceInfo = TRUE)
ciOpt <- getOption("TPPTR_CI")
if(!is.null(ciOpt)){
if (ciOpt){
cols2 = c(cols2, "CI_meltPointUpper", "CI_meltPointLower", "CI_meltPoint_delta")
}
}
cols6 <- "plot"
cols3 <- setdiff(colnames(fDat), c(cols1,cols2, cols6))
## Split featureData into separate data frames:
df1 <- select(fDat, !!!syms(cols1))
df2 <- select(fDat, !!!syms(cols2))
df3 <- select(fDat, !!!syms(cols3))
df6 <- select(fDat, !!!syms(cols6))
## Retrieve fold change matrix from current expressionSet and convert to
## data frame:
df4 <- as.data.frame(Biobase::exprs(setTmp))
## Data frame with indicators which proteins where identified in which experiment:
df5 <- data.frame("protein_identified_in" = rep(TRUE, nrow(setTmp)))
## Append experiment id to all data frame columns to make them unique when
## combined to big experiment-spanning results table:
if (ncol(df1) > 0) colnames(df1) <- paste(colnames(df1), en, sep="_")
if (ncol(df2) > 0) colnames(df2) <- paste(colnames(df2), en, sep="_")
if (ncol(df3) > 0) colnames(df3) <- paste(colnames(df3), en, sep="_")
if (ncol(df4) > 0) colnames(df4) <- paste(colnames(df4), en, sep="_")
if (ncol(df5) > 0) colnames(df5) <- paste(colnames(df5), en, sep="_")
if (ncol(df6) > 0) colnames(df6) <- paste(colnames(df6), en, sep="_")
## If data was normalized, add suffix 'norm_' to the fold change column
## names. Normalized data is recognized by the values of the normalization
## coefficients in the fold change column annotation.
flagIsNormalized <- any(!is.na(pData(data[[en]])$normCoeff))
if (flagIsNormalized) {
colnames(df4) <- paste("norm", colnames(df4), sep="_")
}
## Add protein ID column so that the data frames of multiple experiment
## (with different subsets of proteins detected in each experiment) can
## later be merged together in a robust way:
idsTmp <- featureNames(setTmp)
df1 <- data.frame(Protein_ID=idsTmp, df1, stringsAsFactors=FALSE)
df2 <- data.frame(Protein_ID=idsTmp, df2, stringsAsFactors=FALSE)
df3 <- data.frame(Protein_ID=idsTmp, df3, stringsAsFactors=FALSE)
df4 <- data.frame(Protein_ID=idsTmp, df4, stringsAsFactors=FALSE)
df5 <- data.frame(Protein_ID=idsTmp, df5, stringsAsFactors=FALSE)
df6 <- data.frame(Protein_ID=idsTmp, df6, stringsAsFactors=FALSE)
## Store data frames of each experiment in a list. This will enable
## easy and robust merging using plyr::join_all.
list1[[en]] <- df1
list2[[en]] <- df2
list3[[en]] <- df3
list4[[en]] <- df4
list5[[en]] <- df5
list6[[en]] <- df6
}
merged1 <- arrange(join_all(list1, by="Protein_ID", type="full"), Protein_ID)
merged2 <- arrange(join_all(list2, by="Protein_ID", type="full"), Protein_ID)
merged3 <- arrange(join_all(list3, by="Protein_ID", type="full"), Protein_ID)
merged4 <- arrange(join_all(list4, by="Protein_ID", type="full"), Protein_ID)
merged5 <- arrange(join_all(list5, by="Protein_ID", type="full"), Protein_ID)
merged6 <- arrange(join_all(list6, by="Protein_ID", type="full"), Protein_ID)
## Insert FALSE if a protein was not present in an experiment (instead of the
## NAs generated by the join_all function):
for (en in expNames){
name <- paste("protein_identified_in", en, sep="_")
x <- merged5[, name]
x[is.na(x)] <- FALSE
merged5[, name] <- x
}
## Merge plot columns (columns of individual experiments can contain missing
## values if experiment did not provide enough data for plotting):
plotCols <- grep("plot", colnames(merged6), value = TRUE)
if (length(plotCols)>0){
allPlots <- data.frame(
Protein_ID = merged6$Protein_ID,
plot = merge_cols(data = merged6[,plotCols],
fun = paste,
collapse = '|')
)
merged6 <- join(merged6, allPlots, by="Protein_ID")
}
merged6 <- subset(merged6, select = !colnames(merged6) %in% plotCols)
## Return results:
return(list(curveParDF = merged1,
modelInfoDF = merged2,
otherAnnotDF = merged3,
fcDF = merged4,
presenceDF = merged5,
plotCol = merged6))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.