Nothing
#' Fit a 6-state HMM to log R ratios and B allele frequencies
#' estimated from SNP arrays
#'
#' This function is intended for estimating the integer copy number
#' from germline or DNA of clonal origin using a 6-state HMM. The
#' states are homozygous deletion, hemizygous deletion, diploid copy
#' number, diploid region of homozygosity, single copy gain, and two+
#' copy gain. Because heterozygous markers are more informative for
#' copy number than homozygous markers and regions of homozgosity are
#' common in normal genomes, we currently computed a weighted average
#' of the BAF emission matrix with a uniform 0,1 distribution by the
#' probability that the marker is heterozygous, thereby downweighting
#' the contribution of homozygous SNPs to the likelihood. In addition
#' to making the detection of copy-neutral regions of homozgosity less
#' likely, it also helps prevent confusing hemizygous deletions with
#' copy neutral regions of homozygosity -- the former would be driven
#' mostly by the log R ratios. This is experimental and subject to
#' change.
#'
#' The \code{hmm2} method allows parallelization across samples using
#' the foreach paradigm. Parallelization is automatic when enabled
#' via packages such as snow/doSNOW.
#'
#'
#' @param object A \code{\link{SnpArrayExperiment}}
#' @param emission_param A \code{\link{EmissionParam}} object
#' @param transition_param A \code{\link{TransitionParam}} object
#' @param ... currently ignored
#' @examples
#' tp <- TransitionParam()
#' TransitionParam(taup=1e12)
#' @export
setGeneric("hmm2", function(object, emission_param=EmissionParam(),
transition_param=TransitionParam(), ...) standardGeneric("hmm2"))
setGeneric("loglik", function(object) standardGeneric("loglik"))
#' Calculate the emission probabilities for the 6-state HMM
#'
#' Given the data and an object containing parameters for the HMM,
#' this function computes emission probabilities. This function is
#' not intended to be called by the user and is exported for internal
#' use by other BioC packages.
#' @return A matrix of emission probabilities. Column correspond to
#' the HMM states and rows correspond to markers on the array (SNPs
#' and nonpolymorphic markers)
#'
#' @param x list of low-level data with two elements: a numeric vector of log
#' R ratios and a numeric vector of B allele frequencies
#' @param param parameters for the 6-state HMM
#' @seealso baumWelchUpdate
#' @export
#' @aliases calculateEmission,RangedSummarizedExperiment-method calculateEmission,list-method calculateEmission,numeric-method
setGeneric("calculateEmission", function(x, param=EmissionParam()) standardGeneric("calculateEmission"))
setGeneric("forward_backward", function(x) standardGeneric("forward_backward"))
setGeneric("Viterbi",
function(state=Rle(), loglik=numeric(1),
forward_backward=matrix(0.0, length(state), 6))
standardGeneric("Viterbi"))
setGeneric("transition", function(object) standardGeneric("transition"))
setGeneric("initial", function(object) standardGeneric("initial"))
setGeneric("statei", function(object) standardGeneric("statei"))
setGeneric("state<-", function(object,value) standardGeneric("state<-"))
setGeneric("statef", function(object) standardGeneric("statef"))
#' A parameter class for computing Emission probabilities
#'
#' Parameters for computing emission probabilities for a 6-state HMM,
#' including starting values for the mean and standard deviations for
#' log R ratios (assumed to be Gaussian) and B allele frequencies
#' (truncated Gaussian), and initial state probabilities.
#'
#' The log R ratios are assumed to be emitted from a normal
#' distribution with a mean and standard deviation that depend on the
#' latent copy number. Similarly, the BAFs are assumed to be emitted
#' from a truncated normal distribution with a mean and standard
#' deviation that depends on the latent number of B alleles relative
#' to the total number of alleles (A+B).
#'
#' @return numeric vector
#' @examples
#' ep <- EmissionParam()
#' cn_means(ep)
#' @rdname EmissionParam-methods
#' @aliases cn_means,EmissionParam-method cn_means,HmmParam-method cn_means<-,EmissionParam,numeric-method
#' @export
setGeneric("cn_means", function(object) standardGeneric("cn_means"))
#' @examples
#' ep <- EmissionParam()
#' cn_sds(ep)
#' @rdname EmissionParam-methods
#' @aliases cn_sds,EmissionParam-method cn_sds,HmmParam-method cn_sds<-,EmissionParam,numeric-method
#' @export
setGeneric("cn_sds", function(object) standardGeneric("cn_sds"))
#' @examples
#' ep <- EmissionParam()
#' baf_means(ep)
#' @rdname EmissionParam-methods
#' @aliases baf_means,EmissionParam-method baf_means,HmmParam-method
#' @export
setGeneric("baf_means", function(object) standardGeneric("baf_means"))
#' @examples
#' ep <- EmissionParam()
#' baf_sds(ep)
#' @rdname EmissionParam-methods
#' @aliases baf_sds,EmissionParam-method baf_sds,HmmParam-method
#' @export
setGeneric("baf_sds", function(object) standardGeneric("baf_sds"))
#' @examples
#' ep <- EmissionParam()
#' baf_means(ep) <- baf_means(ep)
#' @rdname EmissionParam-methods
#' @aliases baf_means<-,EmissionParam,numeric-method
#' @export
setGeneric("baf_means<-", function(object, value) standardGeneric("baf_means<-"))
#' @examples
#' ep <- EmissionParam()
#' baf_sds(ep) <- baf_sds(ep)
#' @param value numeric vector
#' @rdname EmissionParam-methods
#' @aliases baf_sds<-,EmissionParam,numeric-method
#' @export
setGeneric("baf_sds<-", function(object, value) standardGeneric("baf_sds<-"))
#' @examples
#' ep <- EmissionParam()
#' cn_sds(ep) <- cn_sds(ep)
#' @rdname EmissionParam-methods
#' @export
setGeneric("cn_sds<-", function(object, value) standardGeneric("cn_sds<-"))
#' @examples
#' ep <- EmissionParam()
#' cn_means(ep) <- cn_means(ep)
#' @rdname EmissionParam-methods
#' @export
setGeneric("cn_means<-", function(object, value) standardGeneric("cn_means<-"))
setGeneric("taup", function(object) standardGeneric("taup"))
setGeneric("taumax", function(object) standardGeneric("taumax"))
#' Constructor for EmissionParam class
#'
#'
#' @param cn_means numeric vector of starting values for log R ratio means (order is by copy number state)
#' @param cn_sds numeric vector of starting values for log R ratio standard deviations (order is by copy number state)
#' @param baf_means numeric vector of starting values for BAF means ordered. See example for details on how these are ordered.
#' @param baf_sds numeric vector of starting values for BAF means ordered. See example for details on how these are ordered.
#' @param initial numeric vector of intial state probabilities
#' @param EMupdates number of EM updates
#' @param CN_range the allowable range of log R ratios. Log R ratios outside this range are thresholded.
#' @param temper Emission probabilities can be tempered by emit^temper. This is highly experimental.
#' @param p_outlier probability that an observation is an outlier (assumed to be the same for all markers)
#' @param modelHomozygousRegions logical. If FALSE (default), the
#' emission probabilities for BAFs are modeled from a mixture of
#' truncated normals and a Unif(0,1) where the mixture probabilities
#' are given by the probability that the SNP is heterozygous. See
#' Details below for a discussion of the implications.
#'
#' @section Details:
#' When \code{modelHomozygousRegions} is FALSE (the default in
#' versions >= 1.28.0), emission probabilities for B allele frequences
#' are calculated from a mixture of a truncated normal densities and a
#' Unif(0,1) density with the mixture probabilities given by the
#' probability that a SNP is homozygous. In particular, let \code{p}
#' denote a 6 dimensional vector of density estimates from a truncated
#' normal distribution for the latent genotypes 'A', 'B', 'AB', 'AAB',
#' 'ABB', 'AAAB', and 'ABBB'. The probability that a genotype is
#' homozygous is estimated as
#'
#' \deqn{prHom=(p["A"] + p["B"])/sum(p)}
#'
#' and the probability that the genotype is heterozygous (any latent
#' genotype that is not 'A' or 'B') is given by
#'
#' \deqn{prHet = 1-prHom}
#'
#' Since the density of a Unif(0,1) is 1, the 6-dimensional vector of
#' emission probability at a SNP is given by
#'
#' \deqn{emit = prHet * p + (1-prHet)}
#'
#' The above has the effect of minimizing the influence of BAFs near 0
#' and 1 on the state path estimated by the Viterbi algorithm. In
#' particular, the emission probability at homozygous SNPs will be
#' virtually the same for states 3 and 4, but at heterozygous SNPs the
#' emission probability for state 3 will be an order of magnitude
#' greater for state 3 (diploid) compared to state 4 (diploid region
#' of homozygosity). The advantage of this parameterization are fewer
#' false positive hemizygous deletion calls. [ Log R ratios tend to
#' be more sensitive to technical sources of variation than the
#' corresponding BAFs/ genotypes. Regions in which the log R ratios
#' are low due to technical sources of variation will be less likely
#' to be interpreted as evidence of copy number loss if heterozygous
#' genotypes have more 'weight' in the emission estimates than
#' homozgous genotypes. ] The trade-off is that only states
#' estimated by the HMM are those with copy number alterations. In
#' particular, copy-neutral regions of homozygosity will not be
#' called.
#'
#' By setting \code{modelHomozygousRegions = TRUE}, the emission
#' probabilities at a SNP are given simply by the \code{p} vector
#' described above and copy-neutral regions of homozygosity will be
#' called.#'
#'
#' @examples
#' ep <- EmissionParam()
#' show(ep)
#' cn_means(ep)
#' cn_sds(ep)
#' baf_means(ep)
#' baf_sds(ep)
#' @family EmissionParam-methods
#' @rdname EmissionParam-methods
#' @aliases EmissionParam EmissionParam,missing-method EmissionParam,numeric-method
#' @export
setGeneric("EmissionParam", function(cn_means=CN_MEANS(),
cn_sds=CN_SDS(),
baf_means=BAF_MEANS(),
baf_sds=BAF_SDS(),
initial=rep(1/6, 6),
EMupdates=5L,
CN_range=c(-5, 3),
temper=1,
p_outlier=1/100,
modelHomozygousRegions=FALSE)
standardGeneric("EmissionParam"))
#' Accessor for the maximum number of Baum-Welch updates
#'
#' This function is exported primarily for internal use by other BioC
#' packages.
#'
#' @param object see \code{showMethods("EMupdates")}
#' @aliases EMupdates,EmissionParam-method EMupdates,HmmParam-method
#' @rdname EmissionParam-methods
#' @export
setGeneric("EMupdates", function(object) standardGeneric("EMupdates"))
setGeneric("EMupdates<-", function(object,value) standardGeneric("EMupdates<-"))
setGeneric("probOutlier", function(object) standardGeneric("probOutlier"))
#' Methods to set and get emission probabilities
#'
#' Get or set a matrix of emission probabilities. This function is
#' exported primarily for internal use by other BioC packages.
#'
#' @return matrix
#' @param object see \code{showMethods(emission)}
#' @export
#' @rdname emission
#' @aliases emission,HmmParam-method
setGeneric("emission", function(object) standardGeneric("emission"))
## used by MinimumDistance
#' @param value a matrix of emission probabilities
#' @rdname emission
#' @aliases emission<-,HmmParam-method emission<-,HMM-method
#' @export
setGeneric("emission<-", function(object, value) standardGeneric("emission<-"))
#' Constructor for TransitionParam class
#'
#' Contains parameters for computing transition probabilities
#'
#' @examples
#' TransitionParam()
#' ## higher values of taup make transitions between states less likely
#' TransitionParam(taup=1e12)
#' @param taup length-one numeric vector
#' @param taumax The maximum probability that the current state is the
#' same as the preceding state. See details
#'
#' @details Diagonal elements of the transition probability matrix are
#' computed as e^{-2*d/taup}, where d is the distance between markers
#' i and i-1 and \code{taup} is typically in the range of 1xe10. This
#' probability is constrained to be no larger than \code{taumax}. The
#' probabilities on the off-diagonal elements are the same and are
#' subject to the constraint that the rows of the transition
#' probability matrix sum to 1.
#' @aliases TransitionParam TransitionParam,missing-method TransitionParam,numeric-method
#' @export
setGeneric("TransitionParam",
function(taup=1e10,
taumax=1-5e6)
standardGeneric("TransitionParam"))
#' Constructor for HmmParam class
#'
#' Contains emission probabilities, parameters for emission
#' probabilities, and transition probabilities required for computing
#' the most likely state path via the Viterbi algorithm
#'
#' @param emission A matrix of emission probabilities
#' @param emission_param an object of class \code{EmissionParam}
#' @param transition vector of transition probabilities whose length
#' is N-1, where N is the number of markers. User should provide the
#' probability that the state at marker j is the same as the state at
#' marker j-1. It is assumed that the probability of transitioning to
#' state_j from state_j-1 is the same for all states != state_j-1.
#' @param chromosome character vector
#' @param loglik an object of class \code{LogLik}
#' @param viterbi an object of class \code{Viterbi}
#' @param compute_posteriors logical
#' @param verbose logical
#' @examples
#' HmmParam()
#' @aliases HmmParam HmmParam,missing-method HmmParam,matrix-method
#' @rdname HmmParam
#' @export
setGeneric("HmmParam",
function(emission=matrix(0.0, 0, 0),
##initial=rep(1/6, 6),
emission_param=EmissionParam(),
transition=rep(0.99, nrow(emission)),
chromosome=character(nrow(emission)),
loglik=LogLik(),
viterbi=Viterbi(),
compute_posteriors=TRUE,
verbose=FALSE)
standardGeneric("HmmParam"))
setGeneric("calculateTransitionProbability",
function(x, param=TransitionParam())
standardGeneric("calculateTransitionProbability"))
setGeneric("modev", function(x) standardGeneric("modev"))
#' Constructor for SnpGRanges class
#'
#' @param object A \code{GRanges} object
#' @param isSnp A logical vector. Each genomic interval in the
#' \code{GRanges} container corresponds to a marker on the genotyping
#' array. \code{isSnp} is FALSE for nonpolymorphic markers such as
#' those included on the Affymetrix 6.0 chips.
#' @param ... ignored
#' @examples
#' SnpGRanges()
#' g <- GRanges("chr1", IRanges(15L, 15L))
#' SnpGRanges(g, isSnp=TRUE)
#' @export
#' @rdname SnpGRanges
#' @aliases SnpGRanges
setGeneric("SnpGRanges", function(object=GRanges(),
isSnp, ...)
standardGeneric("SnpGRanges"))
#' Remove SNPs with NAs in any of the low-level estimates
#'
#' @return An object of the same class
#' @param x a container for SNP data (\code{\link{SnpArrayExperiment}})
#' @param i integer vector to subset
#' @aliases NA_filter NA_filter,SnpArrayExperiment-method NA_filter,character-method NA_filter,list-method NA_filter,numeric-method NA_filter,oligoSnpSet-method
#' @export
setGeneric("NA_filter", function(x, i)
standardGeneric("NA_filter"))
setGeneric("distance", function(x) standardGeneric("distance"))
#' SnpArrayExperiment container for log R ratios and B allele frequencies
#'
#' Constructor for SnpArrayExperiment
#'
#' @param cn matrix of copy number estimates (e.g., log R ratios)
#' @param baf matrix of B allele frequencies
#' @param rowRanges GRanges object for SNPs/nonpolymorphic markers
#' @param colData DataFrame containing sample-level covariates
#' @param isSnp logical vector indicating whether marker is a SNP
#' @param ... additional arguments passed to \code{SummarizedExperiment()} constructor function
#' @docType methods
#' @rdname SnpArrayExperiment-class
#' @export
setGeneric("SnpArrayExperiment", function(cn,
baf,
rowRanges=GRanges(),
colData=DataFrame(),
isSnp=logical(), ...)
standardGeneric("SnpArrayExperiment"))
#' Sweep the modal log R ratio (by row or column) from a matrix of log
#' R ratios
#'
#' This function simplifies the process of sweeping the modal log R
#' ratio from the rows or columns of a \code{SnpArrayExperiment}
#' object. It is most useful when a large number of samples (more
#' than 10) are available and the dataset is a collection of germline
#' samples. We assume that the samples are from a single batch and
#' that the modal value will be a robust estimate of the mean log R
#' ratio for diploid copy number. Variation in the modal estimates
#' between markers is presumed to be attributable to probe effects
#' (e.g., differences hybridization efficiency/PCR do to sequence
#' composition). For sex chromosomes, one should apply this function
#' separately to men and women and then recenter the resulting matrix
#' according to the expected copy number.
#'
#' @param x see \code{showMethods(sweepMode)}
#' @param MARGIN integer indicating which margin (1=rows, 2=columns)
#' to sweep the mode
#' @examples
#' data(snp_exp)
#' snp_exp_rowcentered <- sweepMode(snp_exp, 1)
#' snp_exp_colcentered <- sweepMode(snp_exp, 2)
#' x <- lrr(snp_exp)
#' x_rowcentered <- sweep(x, 1, rowModes(x))
#' all.equal(lrr(snp_exp_rowcentered), x_rowcentered)
#' @export
#' @return an object of the same class as \code{x}
setGeneric("sweepMode", function(x, MARGIN) standardGeneric("sweepMode"))
setGeneric("NA_index", function(x) standardGeneric("NA_index"))
## #' HmmGRanges container
## #
## #' @param states copy number number state inferred by HMM
## #' @param feature_starts start location in reference genome [basepairs]
## #' @param feature_chrom end location in reference genome [basepairs]
## #' @param loglik the log likelihood
## #' @param emission_param an instance of \code{EmissionParam} class
## #' @examples
## #' library(oligoClasses)
## #' library(IRanges)
## #' load(system.file("extdata", "snp_exp.rda", package="VanillaICE"))
## #' states <- Rle(factor(c(3, 4, 3, 5, 3, 2, 3, 3, 2, 3, 2, 3)),
## #' as.integer(c(996, 102, 902, 50, 2467, 102, 76, 1822,
## #' 99, 900, 20, 160)))
## #' hgr <- HmmGRanges(states=states, feature_starts=start(snp_exp),
## #' feature_chrom=chromosome(snp_exp), loglik=15.3)
## #'
## # @aliases HmmGRangeso
## # @rdname HmmGRanges-class
## # @export
setGeneric("HmmGRanges", function(states, feature_starts,
feature_chrom, loglik, emission_param=EmissionParam())
standardGeneric("HmmGRanges"))
##setGeneric("isSnp", function(object) standardGeneric("isSnp"))
setGeneric("loglikRatio", function(object) standardGeneric("loglikRatio"))
setGeneric("tolerance", function(object) standardGeneric("tolerance"))
setGeneric("loglik", function(object) standardGeneric("loglik"))
setGeneric("loglikLast", function(object) standardGeneric("loglikLast"))
setGeneric("loglik<-", function(object,value) standardGeneric("loglik<-"))
setGeneric("exceedsTolerance", function(object) standardGeneric("exceedsTolerance"))
#' Accessor for parameters used to compute emission probabilities
#'
#' Parameters for computing emission probabilities include the
#' starting values for the Baum Welch update and initial state
#' probabilities.
#' @examples
#' hparam <- HmmParam()
#' emissionParam(hparam)
#' ep <- EmissionParam()
#' cn_means(ep) <- log2(c(.1/2, 1/2, 2/2, 2/2, 3/2, 4/2))
#' emissionParam(hparam) <- ep
#' @param object an object of class \code{EmissionParam}
#' @return \code{\link{EmissionParam}} instance
#' @rdname emissionParam
#' @aliases emissionParam,HmmGRanges-method emissionParam,HmmParam-method emissionParam<-,HmmGRanges,EmissionParam-method emissionParam<-,HmmParam,EmissionParam-method emissionParam,HMM-method
#' @export
setGeneric("emissionParam", function(object) standardGeneric("emissionParam"))
#' @param value an object of class \code{EmissionParam}
#' @rdname emissionParam
#' @export
setGeneric("emissionParam<-", function(object,value) standardGeneric("emissionParam<-"))
setGeneric("viterbi", function(object) standardGeneric("viterbi"))
setGeneric("viterbi<-", function(object,value) standardGeneric("viterbi<-"))
setGeneric("verbose", function(object) standardGeneric("verbose"))
setGeneric("CN_range", function(object) standardGeneric("CN_range"))
setGeneric("proportionOutlier", function(object) standardGeneric("proportionOutlier"))
setGeneric("temper", function(object) standardGeneric("temper"))
setGeneric("scale")
setGeneric("gstudioPaths", function(object) standardGeneric("gstudioPaths"))
setGeneric("indexGenome", function(object) standardGeneric("indexGenome"))
setGeneric("read", function(object) standardGeneric("read"))
#' Accessor for SNP genotypes
#'
#' Extract SNP genotypes. Genotypes are assumed to be represented as
#' integers: 1=AA, 2=AB, 3=BB.
#' @rdname LowLevelSummaries
#' @param object see \code{showMethods("genotypes")}
setGeneric("genotypes", function(object) standardGeneric("genotypes"))
#' Constructor for SnpArrayExperiment
#'
#' A single-argument generic function to construct a SnpArrayExperiment.
#'
#' @param object see \code{showMethods('SnpExperiment')} for a list of supported objects
#' @export
setGeneric("SnpExperiment", function(object) standardGeneric("SnpExperiment"))
setGeneric("scaleBy", function(x, by) standardGeneric("scaleBy"))
setGeneric("scaleRead", function(x, params) standardGeneric("scaleRead"))
setGeneric("selectCols", function(object) standardGeneric("selectCols"))
#' Complete path to directory for keeping parsed files
#'
#' A character string indicating the complete path for storing parsed
#' files.
#' @seealso \code{\link{parseSourceFile}} \code{\linkS4class{ArrayViews}}
#' @export
#' @param object a \code{ArrayViews} object
#' @seealso \code{\linkS4class{ArrayViews}}
setGeneric("parsedPath", function(object) standardGeneric("parsedPath"))
#' Accessor for file paths containing SNP-level summaries
#'
#' Files containing SNP-level summaries for log R ratios, B allele
#' frequencies, and genotypes -- one sample per subject -- are
#' required.
#'
#' @examples
#' sourcePaths(ArrayViews())
#' @param object an \code{ArrayViews} object
#' @export
#' @aliases sourcePaths,ArrayViews-method
setGeneric("sourcePaths", function(object) standardGeneric("sourcePaths"))
#' Accessors for objects of class ArrayViews
#'
#' @param object see showMethods("lrrFile")
#' @rdname IO
#' @export
setGeneric("lrrFile", function(object) standardGeneric("lrrFile"))
#' @rdname IO
#' @export
setGeneric("lrrFile<-", function(object, value) standardGeneric("lrrFile<-"))
#' @rdname IO
#' @aliases bafFile,ArrayViews-method
#' @export
setGeneric("bafFile", function(object) standardGeneric("bafFile"))
#' @rdname IO
#' @export
#' @aliases gtFile,ArrayViews-method
setGeneric("gtFile", function(object) standardGeneric("gtFile"))
#' Function for parsing GenomeStudio files
#'
#' This function parses genome studio files, writing the low-level
#' data for log R ratios, B allele frequencies, and genotypes to disk
#' as integers (1 file per subject per data type).
#' @param object An \code{\linkS4class{ArrayViews}} object
#' @param param An object of class \code{\link{CopyNumScanParams}}
#' @seealso \code{\link{ArrayViews}} \code{\link{ArrayViews}} \code{\link{CopyNumScanParams}}
#' @return NULL
#' @export
setGeneric("parseSourceFile", function(object, param) standardGeneric("parseSourceFile"))
setGeneric("SnpDataFrame",
function(x, row.names=NULL, check.names=TRUE,
isSnp)
standardGeneric("SnpDataFrame"))
setGeneric("doPosterior", function(object) standardGeneric("doPosterior"))
setGeneric("posterior", function(object) standardGeneric("posterior"))
#' Accessor for HMM model parameters
#'
#' @param object see \code{showMethods(HmmParam)}
#' @aliases getHmmParams,HmmParam-method getHmmParams,HMM-method
#' @export
#' @examples
#' hmm_object <- HMM()
#' getHmmParams(hmm_object)
setGeneric("getHmmParams", function(object) standardGeneric("getHmmParams"))
setGeneric("granges<-", function(x, value) standardGeneric("granges<-"))
#' Filter the HMM-derived genomic ranges for copy number variants
#'
#' The HMM-derived genomic ranges are represented as a
#' \code{GRanges}-derived object. \code{cnvFilter} returns a
#' \code{GRanges} object using the filters stipulated in the
#' \code{filters} argument.
#' @examples
#' data(snp_exp)
#' fit <- hmm2(snp_exp)
#' segs(fit) ## all intervals
#' cnvSegs(fit)
#' filter_param <- FilterParam(probability=0.95, numberFeatures=10, state=c("1", "2"))
#' cnvSegs(fit, filter_param)
#' filter_param <- FilterParam(probability=0.5, numberFeatures=2, state=c("1", "2"))
#' cnvSegs(fit, filter_param)
#' hemizygous(fit)
#' homozygous(fit)
#' duplication(fit)
#' @param object see \code{showMethods(cnvFilter)}
#' @param filters a \code{\link{FilterParam}} object
#' @seealso \code{\link{FilterParam}}
#' @rdname cnvFilter
#' @export
#' @aliases cnvFilter,HMM-method cnvFilter,GRanges-method
setGeneric("cnvFilter", function(object, filters=FilterParam()) standardGeneric("cnvFilter"))
#' Accessor for the HMM segments
#'
#' Accessor to obtain all segments from the HMM.
#'
#' @return a \code{GRanges}-derived object
#' @aliases segs segs,HMM-method
#' @param object see \code{showMethods(segs)}
#' @export
setGeneric("segs", function(object) standardGeneric("segs"))
#' @rdname cnvFilter
#' @export
setGeneric("cnvSegs", function(object, filters=FilterParam(state=c("1", "2", "5", "6"))) standardGeneric("cnvSegs"))
#' @export
#' @rdname cnvFilter
#' @aliases duplication,HMM-method
setGeneric("duplication", function(object, filters=FilterParam(state=c("5","6"))) standardGeneric("duplication"))
#' @export
#' @rdname cnvFilter
#' @aliases deletion,HMM-method
setGeneric("deletion", function(object, filters=FilterParam(state=c("1","2"))) standardGeneric("deletion"))
#' @aliases hemizygous,HMM-method
#' @export
#' @rdname cnvFilter
setGeneric("hemizygous", function(object, filters=FilterParam(state="2")) standardGeneric("hemizygous"))
#' @export
#' @aliases homozygous,HMM-method
#' @rdname cnvFilter
setGeneric("homozygous", function(object, filters=FilterParam(state="1")) standardGeneric("homozygous"))
#' The number of SNP/nonpolymorphic probes contained in a genomic interval
#'
#' @param object see \code{showMethods(numberFeatures)}
#' @aliases numberFeatures,FilterParam-method numberFeatures,HMM-method numberFeatures,HmmGRanges-method
#' @export
setGeneric("numberFeatures", function(object) standardGeneric("numberFeatures"))
#' Accessor for HMM filter parameters
#'
#' @param object see \code{showMethods(filters)}
#' @aliases filters,HmmParam-method filters,HMM-method
#' @export
setGeneric("filters", function(object) standardGeneric("filters"))
#' Accessor for probability filter
#'
#' @param object a \code{FilterParam} object
#' @export
setGeneric("probability", function(object) standardGeneric("probability"))
setGeneric("state")
setGeneric("lrr")
setGeneric("baf")
setGeneric("copyNumber")
#' Lattice-style plots for granges and SnpArrayExperiment objects
#'
#' Data for the graphic is generated by a call to \code{grangesData}.
#' @param granges a \code{HmmGRanges} object
#' @param se a \code{SnpArrayExperiment}
#' @param param trellis parameters for plotting HMM
#' @rdname plotting
#' @examples
#' if(require("BSgenome.Hsapiens.UCSC.hg18")){
#' bsgenome <- BSgenome.Hsapiens.UCSC.hg18
#' snp_exp <- getExampleSnpExperiment(bsgenome)
#' seqlevels(snp_exp, pruning.mode="coarse") <- "chr22"
#' fit <- hmm2(snp_exp)
#' g <- reduce(hemizygous(fit), min.gapwidth=500e3)
#' trellis_param <- HmmTrellisParam()
#' fig <- xyplotList(g, snp_exp, trellis_param)
#' vps <- viewports()
#' xygrid(fig[[1]], vps, g)
#' }
#' @rdname plotting
#' @export
setGeneric("xyplotList", function(granges, se, param=HmmTrellisParam()) standardGeneric("xyplotList"))
setGeneric("isAutosome", function(object) standardGeneric("isAutosome"))
#' Assess whether genotype is heterozygous based on BAFs
#'
#' @param object a SnpArrayExperiment or ArrayViews object containing
#' BAFs, a matrix of BAFs, or a numeric vector of BAFs.
#' vector of BAFs
#' @param cutoff a length-two numeric vector providing the range of
#' BAFs consistent with allelic heterozygosity
#' @examples
#' if(require("BSgenome.Hsapiens.UCSC.hg18")){
#' bsgenome <- BSgenome.Hsapiens.UCSC.hg18
#' snp_exp <- getExampleSnpExperiment(bsgenome)
#' is_het <- isHeterozygous(snp_exp[, 1], c(0.4, 0.6))
#' table(is_het)
#' }
#' @rdname isHeterozygous
#' @export
setGeneric("isHeterozygous", function(object, cutoff) standardGeneric("isHeterozygous"))
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.