Nothing
############### Documentation ##################################################
#' Toydata
#'
#' This dataset allows to reproduce
#' the examples shown in the vignette.
#'
#' @docType data
#' @keywords internal
#' @name toydata
#' @usage data(toydata)
#' @return All entries are numeric.
#' @format A list of numeric vectors and numeric matrices.
NULL
#' Internal functions
#'
#' @description
#' This page lists and describes all internal functions of
#' the R package \code{\link{globalSeq}}.
#'
#' \strong{Preparation}
#' \cr \code{\link{intern.estim}}
#' estimates the parameters of the negative binomial distribution
#' by maximum likelihood.
#' \cr \code{\link{intern.permu}}
#' permutes values across samples,
#' either across all samples or across samples within subgroups.
#' \cr \code{\link{intern.score}}
#' computes the score test statistic.
#'
#' \strong{Testing}
#' \cr \code{\link{intern.crude}}
#' calculates p-values by permutation.
#' \cr \code{\link{intern.focus}}
#' calculates p-values by permutation,
#' focusing on a region of interest.
#' \cr \code{\link{intern.conva}}
#' calculates p-values by permutation,
#' using the method of control variates.
#'
#' \strong{Decomposition}
#' \cr \code{\link{intern.cov}}
#' decomposes the test statistic to show the influence of covariates.
#' \cr \code{\link{intern.sam}}
#' decomposes the test statistic to show the influence of samples.
#' \cr \code{\link{intern.plot}}
#' plots the contributions of covariates or samples.
#'
#' \strong{Communication}
#' \cr \code{\link{intern.chromo}}
#' runs through all genes on a chromosome.
#' \cr \code{\link{intern.select}}
#' identifies local covariates.
#' \cr \code{\link{intern.matrix}}
#' transforms data to a numeric matrix.
#'
#' @name internal
#' @keywords internal
#' @seealso
#' The user functions of the R package \code{\link{globalSeq}} are
#' \code{\link{cursus}}, \code{\link{omnibus}} and \code{\link{proprius}}.
NULL
############### Preparation ####################################################
#' Internal function
#'
#' This functions estimates the parameters of the negative binomial
#' distribution by maximum likelihood. It is called by the functions
#' \code{\link{omnibus}} and \code{\link{proprius}}.
#'
#' @export
#' @keywords internal
#'
#' @inheritParams omnibus
#'
#' @param y
#' random variable: numeric vector of length \code{n}
#'
#' @details
#' We assume the negative binomial distribution \code{y_i ~ NB(mu,phi)},
#' where the samples are indexed by \code{i} (\code{i=1,...,n}).
#' Our parametrisation leads to \code{E[y]= mu}
#' and \code{Var[y]= mu + phi*mu^2}.
#' With the an offset the model becomes \code{y_i ~ NB(a_i*mu,phi)},
#' where the \code{a_i} are known.
#'
#' @return
#' The function returns a list of numeric vectors.
#'
#' @references
#'
#' A Rauschenberger, MA Jonker, MA van de Wiel, and RX Menezes (2016).
#' "Testing for association between RNA-Seq and high-dimensional data",
#' \emph{BMC Bioinformatics}. 17:118.
#' \href{http://dx.doi.org/10.1186/s12859-016-0961-5}{html}
#' \href{http://www.biomedcentral.com/content/pdf/s12859-016-0961-5.pdf}{pdf}
#' (open access)
#'
#' @seealso
#' This is an \code{\link{internal}} function. The user functions
#' are \code{\link{cursus}}, \code{\link{omnibus}},
#' and \code{\link{proprius}}.
#'
#' @examples
#' set.seed(1)
#' y <- rnbinom(n=1000,mu=10,size=1/0.2)
#' intern.estim(y)
#'
intern.estim <- function(y, offset = NULL) {
if (is.null(offset)) {
mu <- rep(mean(y), length(y))
} else {
mu <- offset * sum(y)/sum(offset)
}
loglik <- function(phi) sum(lgamma(y + 1/phi) - lgamma(1/phi) - lgamma(y +
1) - 1/phi * log(1 + mu * phi) + y * log(mu) - y * log(1/phi +
mu))
phi <- suppressWarnings(stats::optimize(loglik, interval = c(0, 1000), tol = 10^{
-10
}, maximum = TRUE)$maximum)
list(mu = mu, phi = phi)
}
#' Internal function
#'
#' The number of permutations of \code{n} elements is \code{n!}.
#' This function randomly rearranges the elements \code{it} times,
#' and then deletes all duplicates.
#' Thus it finds always less than \code{it} and \code{n!} permutations.
#' If a confounding variable is provided,
#' the function uses stratified permutation.
#' This function is called by the functions \code{\link{omnibus}}
#' and \code{\link{proprius}}.
#'
#' @export
#' @keywords internal
#'
#' @inheritParams omnibus
#' @param n
#' Number of samples.
#' @param it
#' Number of repetitions.
#' @param group
#' Either \code{NULL} or a factor
#' of length \code{n}.
#'
#' @return
#' The function returns a matrix.
#'
#' @references
#'
#' A Rauschenberger, MA Jonker, MA van de Wiel, and RX Menezes (2016).
#' "Testing for association between RNA-Seq and high-dimensional data",
#' \emph{BMC Bioinformatics}. 17:118.
#' \href{http://dx.doi.org/10.1186/s12859-016-0961-5}{html}
#' \href{http://www.biomedcentral.com/content/pdf/s12859-016-0961-5.pdf}{pdf}
#' (open access)
#'
#' @seealso
#' This is an \code{\link{internal}} function. The user functions
#' are \code{\link{cursus}}, \code{\link{omnibus}},
#' and \code{\link{proprius}}.
#'
#' @examples
#' group <- as.factor(c('A','A','B','B','B'))
#' set.seed(1)
#' intern.permu(n=5,it=1000,group=group,kind=1)
#'
intern.permu <- function(n, it, group, kind) {
it <- it + 1 # new
if (is.null(group)) {
temp <- matrix(NA, nrow = n, ncol = it + 1)
temp[, 1] <- 1:n
temp[, -1] <- replicate(it, sample(1:n))
} else {
levels <- unique(group)
temp <- matrix(NA, nrow = n, ncol = it + 1)
temp[, 1] <- 1:n
for (i in 1:length(levels)) {
which <- group == levels[i]
temp[which, -1] <- replicate(it, sample((1:n)[which]))
}
}
if(kind==0){
cbind(temp[,1],unique(temp[,-1],MARGIN=2))
} else {
unique(temp[,-(it+1)], MARGIN = 2)
}
}
#' Internal function
#'
#' This function calculates the test statistic.
#' It is called by the function \code{\link{omnibus}}.
#'
#' @export
#' @keywords internal
#'
#' @inheritParams omnibus
#'
#' @param y
#' response variable: numeric vector of length \code{n}
#' @param R
#' numeric matrix of dimensions \code{n*n} (see example)
#'
#' @return
#' The function returns a real number.
#'
#' @references
#'
#' A Rauschenberger, MA Jonker, MA van de Wiel, and RX Menezes (2016).
#' "Testing for association between RNA-Seq and high-dimensional data",
#' \emph{BMC Bioinformatics}. 17:118.
#' \href{http://dx.doi.org/10.1186/s12859-016-0961-5}{html}
#' \href{http://www.biomedcentral.com/content/pdf/s12859-016-0961-5.pdf}{pdf}
#' (open access)
#'
#' @seealso
#' This is an \code{\link{internal}} function. The user functions
#' are \code{\link{cursus}}, \code{\link{omnibus}},
#' and \code{\link{proprius}}.
#'
#' @examples
#' # simulate high-dimensional data
#' n <- 30
#' p <- 100
#' set.seed(1)
#' y <- rnbinom(n,mu=10,size=1/0.25)
#' X <- matrix(rnorm(n*p),nrow=n,ncol=p)
#'
#' # calculate test statistic
#' R <- X %*% t(X) / ncol(X)
#' mu <- mean(y)
#' phi <- (var(y)-mu)/mu^2
#' intern.score(y,R,mu,phi)
#'
intern.score <- function(y, R, mu, phi) {
0.5 * matrix((y - mu)/(1 + phi * mu), nrow = 1) %*% R %*% matrix((y -
mu)/(1 + phi * mu), ncol = 1) - 0.5 * matrix((mu + y * phi * mu)/(1 +
phi * mu)^2, nrow = 1) %*% matrix(diag(R), ncol = 1)
}
############### Testing ########################################################
#' Internal function
#'
#' Using the parameter estimates \code{mu} and \code{phi}
#' and the permutation matrix \code{perm}, these functions
#' tests for global association between \code{y} and \code{X}.
#' The function \code{\link{intern.crude}} calculates
#' p-values by permutation (without repetitions).
#' The functions \code{\link{intern.focus}} and
#' \code{\link{intern.conva}} use different tricks
#' to increase precision and decrease computational expense.
#'
#' @export
#' @keywords internal
#'
#' @inheritParams omnibus
#'
#' @param y
#' response variable: numeric vector of length \code{n}
#' @param X
#' covariate set: numeric matrix with \code{n} rows (samples)
#' and \code{p} columns (covariates)
#' @param mu
#' mean parameters: numeric vector of length \code{n}
#' @param phi
#' dispersion parameter: non-negative real number
#' @param perm
#' permutations: matrix with \code{n} rows (see example)
#' @param focus
#' number between 0 and 1
#'
#' @details
#'
#' The function \code{\link{intern.focus}}
#' uses permutations in chunks.
#' If the remaining permutations do not allow
#' to reach a specified significance level,
#' it stops and rounds the p-value to one.
#'
#' The function \code{\link{intern.conva}}
#' uses the method of control variates
#' from Senchaudhuri et al. (1995).
#' Roughly speaking, if the test statistics
#' from Rauschenberger et al. (2016)
#' and Goeman et al. (2004) are highly correlated,
#' it returns the asymptotic p-value from Goeman et al. (2004).
#'
#' @return
#' Each function returns a dataframe,
#' with the p-value in the first row,
#' and the test statistic in the second row.
#'
#' @references
#'
#' P Senchaudhuri, CR Mehta, and NR Patel (1995).
#' "Estimating exact p values by the method of control variates
#' or Monte Carlo rescue",
#' \emph{Journal of the American Statistical Association}.
#' 90:640-648
#' \href{http://dx.doi.org/10.2307/2291077}{html}
#' \href{http://www.jstor.org/stable/pdf/2291077.pdf?acceptTC=true}{pdf}
#' (restricted access)
#'
#' A Rauschenberger, MA Jonker, MA van de Wiel, and RX Menezes (2016).
#' "Testing for association between RNA-Seq and high-dimensional data",
#' \emph{BMC Bioinformatics}. 17:118.
#' \href{http://dx.doi.org/10.1186/s12859-016-0961-5}{html}
#' \href{http://www.biomedcentral.com/content/pdf/s12859-016-0961-5.pdf}{pdf}
#' (open access)
#'
#' JJ Goeman, SA van de Geer, F de Kort, and HC van Houwelingen (2004).
#' "A global test for groups of genes:
#' testing association with a clinical outcome",
#' \emph{Bioinformatics}. 20:93-99.
#' \href{http://dx.doi.org/10.1093/bioinformatics/btg382}{html}
#' \href{http://bioinformatics.oxfordjournals.org/content/20/1/93.full.pdf}{pdf}
#' (open access)
#'
#' @seealso
#'
#' These are \code{\link{internal}} functions. The user functions
#' of the R package \code{\link{globalSeq}} are \code{\link{cursus}},
#' \code{\link{omnibus}}, and \code{\link{proprius}}.
#'
#' @examples
#' # simulate high-dimensional data
#' n <- 30
#' p <- 100
#' # set.seed(1)
#' y <- rnbinom(n,mu=10,size=1/0.25)
#' X <- matrix(rnorm(n*p),nrow=n,ncol=p)
#'
#' # prepare arguments
#' mu <- rep(mean(y),n)
#' phi <- (var(y)-mu)/mu^2
#' perm <- intern.permu(n=n,it=99,group=NULL,kind=1)
#'
#' # perform tests
#' intern.crude(y,X,mu,phi,perm)
#' intern.focus(y,X,mu,phi,perm,focus=0.01)
#' intern.conva(y,X,mu,phi,perm,NULL)
#'
intern.crude <- function(y, X, mu, phi, perm) {
if (ncol(X) == 0) {
pvalue <- NA
teststat <- NA
} else if (sum(y) == 0) {
pvalue <- 1
teststat <- NA
} else {
R <- X %*% t(X)/ncol(X)
nb_sim <- apply(perm, 2, function(perm) globalSeq::intern.score(y = y[perm],
R = R, mu = mu[perm], phi = phi))
pvalue <- sum(nb_sim >= nb_sim[1])/ncol(perm)
teststat <- nb_sim[1]
}
data.frame(pvalue = pvalue, teststat = teststat, covs=ncol(X))
}
#' @export
#' @keywords internal
#' @rdname intern.crude
intern.focus <- function(y, X, mu, phi, perm, focus) {
if (ncol(X) == 0) {
pvalue <- NA
teststat <- NA
} else if (sum(y) == 0) {
pvalue <- 1
teststat <- NA
} else {
R <- X %*% t(X)/ncol(X)
it <- ncol(perm)
target <- ceiling(focus * it)
i <- -Inf
z <- 0
sim <- rep(NA, it)
pos <- c(2^(0:floor(log(it, base = 2))), it + 1)
for (j in 1:(length(pos) - 1)) {
if (z <= target & i <= it) {
for (i in pos[j]:(pos[j + 1] - 1)) {
sim[i] <- globalSeq::intern.score(y = y[perm[, i]], R = R, mu = mu[perm[,
i]], phi = phi)
}
z <- z + sum(sim[pos[j]:(pos[j + 1] - 1)] >= sim[1])
} else {
z <- i
break
}
}
pvalue <- z/i
teststat <- sim[1]
}
data.frame(pvalue = pvalue, teststat = teststat, covs=ncol(X))
}
#' @export
#' @keywords internal
#' @rdname intern.crude
intern.conva <- function(y, X, mu, phi, perm, offset) {
if (ncol(X) == 0) {
out <- data.frame(pvalue = NA, teststat = NA, rausch = NA, goeman = NA,
cor = NA, pstar = NA, covs = 0)
} else if (length(unique(y))<=1) {
out <- data.frame(pvalue = 1, teststat = 0, rausch = 1, goeman = 1,
cor = 1, pstar = NA, covs = ncol(X))
} else {
R <- X %*% t(X)/ncol(X)
it <- ncol(perm)
### rausch ###
nb_sim <- apply(perm, 2, function(perm) globalSeq::intern.score(y = y[perm],
R = R, mu = mu[perm], phi = phi))
# nb <- nb_sim >= nb_sim[1] ### original
# p_nb <- sum(nb)/it ### original
nb <- nb_sim[-1] >= nb_sim[1] ### unbiased
p_nb <- sum(nb)/(it-1) ### unbiased
### goeman ###
gt_sim <- apply(perm, 2, function(perm) t(y[perm] - mean(y)) %*%
R %*% (y[perm] - mean(y))/var(y))
# gt <- gt_sim >= gt_sim[1] ### original
# p_gt <- sum(gt)/it ### original
gt <- gt_sim[-1] >= gt_sim[1] ### unbiased
p_gt <- sum(gt)/(it-1) ### unbiased
### pstar ###
# pstar <- globaltest::p.value(globaltest::gt(y,~X)) ### compare
if(!is.null(offset)){y <- offset*y}
n <- length(y)
mu2 <- var(y)
H <- 1/n * matrix(1, nrow = n) %*% matrix(1, ncol = n)
I <- diag(n)
RT <- t(I - H) %*% R %*% (I - H)
exp <- sum(diag(RT))
var <- 2/(n + 1) * ((n - 1) * sum(diag(RT %*% RT)) - sum(diag(RT))^2)
c <- var/(2 * exp)
v <- 2 * exp^2/var
pstar <- 1 - stats::pchisq(gt_sim[1]/c, df = v)
### monte carlo rescue ###
D <- nb - gt + pstar
p <- sum(D)/it
if(!is.na(p)){
if (p < 0 | p > 1) {
if (p < 0) {
p <- 0
}
if (p > 1) {
p <- 1
}
}
}
cor <- cor(nb, gt)
out <- data.frame(pvalue = p, teststat = nb_sim[1], covs = ncol(X),
rausch = p_nb, goeman = p_gt, cor = round(cor, 2),
pstar = pstar)
}
out
}
############### Decomposition ##################################################
#' Internal function
#'
#' These functions calculate the contribution of covariate
#' or samples to the test statistic.
#' They are called by the function \code{\link{proprius}}.
#'
#' @export
#' @keywords internal
#'
#' @inheritParams intern.crude
#'
#' @return
#' Both functions return a numeric vector.
#'
#' @references
#'
#' A Rauschenberger, MA Jonker, MA van de Wiel, and RX Menezes (2016).
#' "Testing for association between RNA-Seq and high-dimensional data",
#' \emph{BMC Bioinformatics}. 17:118.
#' \href{http://dx.doi.org/10.1186/s12859-016-0961-5}{html}
#' \href{http://www.biomedcentral.com/content/pdf/s12859-016-0961-5.pdf}{pdf}
#' (open access)
#'
#' JJ Goeman, SA van de Geer, F de Kort, and HC van Houwelingen (2004).
#' "A global test for groups of genes:
#' testing association with a clinical outcome",
#' \emph{Bioinformatics}. 20:93-99.
#' \href{http://dx.doi.org/10.1093/bioinformatics/btg382}{html}
#' \href{http://bioinformatics.oxfordjournals.org/content/20/1/93.full.pdf}{pdf}
#' (open access)
#'
#' @seealso
#'
#' This is an \code{\link{internal}} function. The user functions
#' of the R package \code{\link{globalSeq}} are \code{\link{cursus}},
#' \code{\link{omnibus}}, and \code{\link{proprius}}.
#'
#' @examples
#' # simulate high-dimensional data
#' n <- 30
#' p <- 100
#' set.seed(1)
#' y <- rnbinom(n,mu=10,size=1/0.25)
#' X <- matrix(rnorm(n*p),nrow=n,ncol=p)
#'
#' # prepare arguments
#' mu <- rep(mean(y),n)
#' phi <- (var(y)-mean(y))/mean(y)^2
#'
#' # decompose test statistic
#' intern.sam(y,X,mu,phi)
#' intern.cov(y,X,mu,phi)
#'
intern.sam <- function(y, X, mu, phi) {
n <- nrow(X) # number of samples
R <- X %*% t(X)/ncol(X)
u <- rep(NA, n)
for (i in 1:n) {
u[i] <- sum(0.5 * (y[i] - mu[i])/(1 + phi * mu[i]) * R[i, ] * (y -
mu)/(1 + phi * mu)) - 0.5 * R[i, i] * (mu[i] + y[i] * phi *
mu[i])/(1 + phi * mu[i])^2
}
names(u) <- rownames(X)
u
}
#' @export
#' @keywords internal
#' @rdname intern.sam
intern.cov <- function(y, X, mu, phi) {
p <- ncol(X) # number of covariates
u <- rep(NA, p)
for (i in 1:p) {
R <- 1/p * matrix(X[, i], ncol = 1) %*% matrix(X[, i], nrow = 1)
u[i] <- 0.5 * matrix((y - mu)/(1 + phi * mu), nrow = 1) %*% R %*%
matrix((y - mu)/(1 + phi * mu), ncol = 1) - 0.5 * matrix((mu +
y * phi * mu)/(1 + phi * mu)^2, nrow = 1) %*% matrix(diag(R),
ncol = 1)
}
names(u) <- colnames(X)
u
}
#' Internal function
#'
#' This function plots the individual contributions
#' to the test statistic.
#' It is called by the function \code{\link{proprius}}.
#'
#' @export
#' @keywords internal
#'
#' @param u
#' influence:
#' numeric vector of length \code{n}
#' @param upper
#' critical values:
#' numeric vector of length \code{n}
#' @param xlab
#' label of horizontal axis:
#' character string
#'
#' @return
#' The function plots the arguments.
#'
#' @references
#'
#' A Rauschenberger, MA Jonker, MA van de Wiel, and RX Menezes (2016).
#' "Testing for association between RNA-Seq and high-dimensional data",
#' \emph{BMC Bioinformatics}. 17:118.
#' \href{http://dx.doi.org/10.1186/s12859-016-0961-5}{html}
#' \href{http://www.biomedcentral.com/content/pdf/s12859-016-0961-5.pdf}{pdf}
#' (open access)
#'
#' @seealso
#' This is an \code{\link{internal}} function. The user functions
#' are \code{\link{cursus}}, \code{\link{omnibus}},
#' and \code{\link{proprius}}.
#'
#' @examples
#' # simulate influences
#' set.seed(1)
#' u <- rchisq(n=100,df=2)
#'
#' # influence plot
#' upper <- rep(qchisq(p=0.95,df=2),times=100)
#' intern.plot(u,upper)
#'
intern.plot <- function(u, upper = NULL, xlab = "indices") {
lwd <- log(1000/length(u))
lwd <- max(lwd, 0.1)
lwd <- min(lwd, 5)
n <- length(u)
min <- min(u, upper)
max <- max(u, upper)
if (is.null(upper)) {
col <- ifelse(u >= 0, "black", "grey")
} else {
col <- ifelse(u > upper, "black", "black")
}
graphics::par(mar = c(5, 4, 1, 1))
graphics::plot.new()
graphics::plot.window(xlim = c(1, n), ylim = c(min - abs(0.1 * min), max + abs(0.1 *
max)))
graphics::box()
graphics::abline(a = 0, b = 0, lty = 2)
for (i in 1:n) {
graphics::segments(x0 = i, y0 = 0, x1 = i, y1 = u[i], col = col[i], lwd = lwd)
}
if (is.null(upper)) {
cond <- TRUE
} else {
cond <- ifelse(u > upper, TRUE, FALSE)
h <- c(0, 0, rep(1:n, each = 2)) + 0.5
v <- c(min - abs(max), rep(upper, each = 2), min - abs(max))
graphics::polygon(x = h, y = v, density = 40, col = "grey")
}
if (n <= 25) {
graphics::axis(side = 1, at = (1:n)[!cond], labels = names(u)[!cond], las = 2,
cex.axis = 0.8, col.axis = "grey")
graphics::axis(side = 1, at = (1:n)[cond], labels = names(u)[cond], las = 2,
cex.axis = 0.8, col.axis = "black")
graphics::axis(side = 2)
graphics::title(ylab = "contribution")
} else {
graphics::axis(side = 1)
graphics::axis(side = 2)
graphics::title(ylab = "contribution", xlab = xlab)
}
}
############### Communication ##################################################
#' Internal function
#'
#' Communicates between \code{\link{cursus}} and \code{\link{omnibus}}
#' by selecting the covariates of interest.
#'
#' @export
#' @keywords internal
#'
#' @inheritParams intern.chromo
#' @inheritParams cursus
#' @inheritParams omnibus
#'
#' @param i index
#' @param Ystart location (or start location)
#' @param Yend location (or end location)
#'
#' @return
#' The function returns a dataframe,
#' with the p-value in the first column,
#' and the test statistic in the second column.
#'
#' @references
#'
#' A Rauschenberger, MA Jonker, MA van de Wiel, and RX Menezes (2016).
#' "Testing for association between RNA-Seq and high-dimensional data",
#' \emph{BMC Bioinformatics}. 17:118.
#' \href{http://dx.doi.org/10.1186/s12859-016-0961-5}{html}
#' \href{http://www.biomedcentral.com/content/pdf/s12859-016-0961-5.pdf}{pdf}
#' (open access)
#'
#' @seealso
#'
#' This is an \code{\link{internal}} function. The user functions
#' are \code{\link{cursus}}, \code{\link{omnibus}},
#' and \code{\link{proprius}}.
#'
#' @examples
#' # simulate high-dimensional data
#' n <- 30
#' q <- 10
#' p <- 100
#' set.seed(1)
#' Y <- matrix(rnbinom(q*n,mu=10,
#' size=1/0.25),nrow=q,ncol=n)
#' X <- matrix(rnorm(p*n),nrow=p,ncol=n)
#' Yloc <- seq(0,1,length.out=q)
#' Xloc <- seq(0,1,length.out=p)
#' window <- 1
#'
#' # hypothesis testing
#' cursus(Y,Yloc,X,Xloc,window)
#'
#' @usage
#' intern.select(i, Y, Ystart, Yend, X, Xloc,
#' window, offset, group,
#' perm, phi, kind)
#'
intern.select <- function(i, Y, Ystart, Yend, X, Xloc, window, offset,
group, perm, phi, kind) {
Y <- globalSeq::intern.matrix(Y)
if (is.matrix(X) | is.data.frame(X)) {
sel <- Ystart[i] - window <= Xloc & Xloc <= Yend[i] + window
y <- Y[i, ]
Xsel <- t(X[sel, , drop = FALSE])
if (nrow(Xsel) == 0) {
out <- NA
} else {
out <- globalSeq::omnibus(y = y, X = Xsel, offset = offset, group = group,
perm = perm, phi = phi[i], kind = kind) # was phi = phi instead of phi = phi[i]
}
} else {
Xsel <- list()
for (j in 1:length(X)) {
sel <- Ystart[i] - window[[j]] <= Xloc[[j]] & Xloc[[j]] <=
Yend[i] + window[[j]]
y <- Y[i, ]
Xsel[[j]] <- t(X[[j]][sel, , drop = FALSE])
}
if (any(sapply(X, nrow) == 0)) {
NA
} else {
out <- globalSeq::omnibus(y = y, X = Xsel, offset = offset, group = group,
perm = perm, phi = phi[i], kind = kind)
}
}
out
}
#' Internal function
#'
#' Communicates between \code{\link{cursus}} and \code{\link{omnibus}}
#' by coordinating a chromosome-wide analysis.
#'
#' @export
#' @keywords internal
#'
#' @inheritParams cursus
#' @inheritParams omnibus
#'
#' @param Y
#' RNA-Seq data\strong{:}
#' numeric matrix with \code{q} rows (genes)
#' and \code{n} columns (samples);
#' or a SummarizedExperiment object
#' @param Ystart
#' start location of genes\strong{:}
#' numeric vector of length \code{q}
#' @param Yend
#' end location of genes\strong{:}
#' NULL or numeric vector of length \code{q}
#' @param X
#' genomic profile\strong{:}
#' numeric matrix with \code{p} rows (covariates)
#' and \code{n} columns (samples)
#' @param Xloc
#' location covariates\strong{:}
#' numeric vector of length \code{p}
#' @param window
#' maximum distance\strong{:}
#' non-negative real number
#'
#' @return
#'
#' The function returns a dataframe,
#' with the p-value in the first column,
#' and the test statistic in the second column.
#'
#' @examples
#' # simulate high-dimensional data
#' n <- 30
#' q <- 10
#' p <- 100
#' set.seed(1)
#' Y <- matrix(rnbinom(q*n,mu=10,
#' size=1/0.25),nrow=q,ncol=n)
#' X <- matrix(rnorm(p*n),nrow=p,ncol=n)
#' Yloc <- seq(0,1,length.out=q)
#' Xloc <- seq(0,1,length.out=p)
#' window <- 1
#'
#' # hypothesis testing
#' cursus(Y,Yloc,X,Xloc,window)
#'
#' @usage
#' intern.chromo(Y, Ystart, Yend, X, Xloc,
#' window, offset, group, perm,
#' nodes, phi, kind)
#'
intern.chromo <- function(Y, Ystart, Yend, X, Xloc, window, offset, group,
perm, nodes, phi, kind) {
Y <- globalSeq::intern.matrix(Y)
if (nodes == 1) {
out <- sapply(1:nrow(Y), function(i) globalSeq::intern.select(i = i, Y = Y,
Ystart = Ystart, Yend = Yend, X = X, Xloc = Xloc, window = window,
offset = offset, group = group,
perm = perm, phi = phi, kind = kind))
} else {
cluster <- parallel::makeCluster(nodes)
intern.select <- globalSeq::intern.select
parallel::clusterExport(cluster, "intern.select",envir=environment())
parallel::clusterExport(cluster, c("Ystart", "Y", "Yend", "X",
"Xloc", "window", "offset", "group", "perm", "phi", "kind"),
envir = environment())
out <- parallel::parSapply(cluster, 1:nrow(Y),
function(i) intern.select(i = i, Y = Y, Ystart = Ystart,
Yend = Yend, X = X, Xloc = Xloc, window = window,
offset = offset, group = group, perm = perm,
phi = phi, kind = kind))
parallel::stopCluster(cluster)
rm(cluster)
}
out
}
#' Internal function
#'
#' Convert RNA-Seq data to a numeric matrix
#'
#' @export
#' @keywords internal
#'
#' @inheritParams intern.chromo
#'
#' @return
#'
#' The function returns a matrix.
#'
#' @examples
#' # simulate RNA-Seq data
#' Y <- matrix(rnbinom(30,mu=10,size=1/0.2),nrow=10,ncol=3)
#' rownames(Y) <- paste("gene",1:nrow(Y),sep="")
#' colnames(Y) <- paste("cell",1:ncol(Y),sep="")
#'
#' # create data structure
#' # Z <- SummarizedExperiment::SummarizedExperiment(
#' # S4Vectors::SimpleList(counts=Y))
#'
#' # conversion to matrix
#' # all.equal(Y,intern.matrix(Z))
#'
#' @usage
#' intern.matrix(Y)
#'
intern.matrix <- function(Y){
if(!is.matrix(Y)){
if(class(Y) %in% c("RangedSummarizedExperiment","SummarizedExperiment","SummarizedExperiment0")){
if(!is.element("SummarizedExperiment",utils::installed.packages()[,1])){
stop("Please transform Y to a matrix, or type:
BiocManager::install(\"SummarizedExperiment\")")
} else {
Y <- SummarizedExperiment::assays(Y)$counts
}
#} else if(class(Y)=="DGEList"){ ### DGEList
# Y <- Y$counts
#} else if(class(Y)=="data.frame"){ ### data.frame
# Y <- as.matrix(Y)
}
}
Y
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.