R/lollipopPlot.R

Defines functions FUN lollipopPlot

Documented in lollipopPlot

#' Draws lollipop plot of amino acid changes on to Protein structure.
#'
#' @description Draws lollipop plot of amino acid changes. Protein domains are derived from PFAM database.
#' @details This function by default looks for fields 'HGVSp_Short', 'AAChange' or 'Protein_Change' in maf file. One can also manually specify field name containing amino acid changes.
#' @param maf an \code{\link{MAF}} object generated by \code{\link{read.maf}}
#' @param gene HGNC symbol for which protein structure to be drawn.
#' @param AACol manually specify column name for amino acid changes. Default looks for fields 'HGVSp_Short', 'AAChange' or 'Protein_Change'. Changes can be of any format i.e, can be a numeric value or HGVSp annotations (e.g; p.P459L, p.L2195Pfs*30 or p.Leu2195ProfsTer30)
#' @param labelPos Amino acid positions to label. If 'all', labels all variants.
#' @param labPosSize Text size for labels. Default 0.9
#' @param showMutationRate Whether to show the somatic mutation rate on the title. Default TRUE
#' @param showDomainLabel Label domains within the plot. Default TRUE. If `FALSE`` domains are annotated in legend.
#' @param cBioPortal Adds annotations similar to cBioPortals MutationMapper and collapse Variants into Truncating and rest.
#' @param refSeqID RefSeq transcript identifier for \code{gene} if known.
#' @param proteinID RefSeq protein identifier for \code{gene} if known.
#' @param repel If points are too close to each other, use this option to repel them. Default FALSE. Warning: naive method, might make plot ugly in case of too many variants!
#' @param collapsePosLabel Collapses overlapping labels at same position. Default TRUE
#' @param showLegend Default TRUE
#' @param legendTxtSize Text size for legend. Default 0.8
#' @param labPosAngle angle for labels. Defaults to horizonal 0 degree labels. Set to 90 for vertical; 45 for diagonal labels.
#' @param domainLabelSize text size for domain labels. Default 0.8
#' @param roundedRect Default TRUE. If `TRUE` domains are drawn with rounded corners. Requires \code{berryFunctions}
#' @param axisTextSize text size x and y tick labels. Default c(1,1).
#' @param printCount If TRUE, prints number of summarized variants for the given protein.
#' @param colors named vector of colors for each Variant_Classification. Default NULL.
#' @param domainAlpha Default 1
#' @param labelOnlyUniqueDoamins Default TRUE only labels unique doamins.
#' @param defaultYaxis If FALSE, just labels min and maximum y values on y axis.
#' @param pointSize size of lollipop heads. Default 1.5
#' @param titleSize font size for title and subtitle. Default c(1.2, 1)
#' @param domainBorderCol Default "black". Set to NA to remove.
#' @param bgBorderCol Default "black". Set to NA to remove.
#' @return Nothing
#' @examples
#' laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools")
#' laml <- read.maf(maf = laml.maf)
#' lollipopPlot(maf = laml, gene = 'KIT', AACol = 'Protein_Change')
#'
#' @export

lollipopPlot = function(maf, gene = NULL, AACol = NULL, labelPos = NULL, labPosSize = 0.9, showMutationRate = TRUE,
                        showDomainLabel = TRUE, cBioPortal = FALSE, refSeqID = NULL, proteinID = NULL, roundedRect = TRUE,
                        repel = FALSE, collapsePosLabel = TRUE, showLegend = TRUE, legendTxtSize = 0.8, labPosAngle = 0, domainLabelSize = 0.8, axisTextSize = c(1, 1),
                        printCount = FALSE, colors = NULL, domainAlpha = 1, domainBorderCol = "black", bgBorderCol = "black", labelOnlyUniqueDoamins = TRUE, defaultYaxis = FALSE, titleSize = c(1.2, 1), pointSize = 1.5){

  if(is.null(gene)){
    stop('Please provide a gene name.')
  }

  geneID = gene
  #Protein domain source.
  gff = system.file('extdata', 'protein_domains.RDs', package = 'maftools')
  gff = readRDS(file = gff)
  data.table::setDT(x = gff)

  mut = subsetMaf(maf = maf, includeSyn = FALSE, genes = gene, query = "Variant_Type != 'CNV'", mafObj = FALSE)

  if(is.null(AACol)){
    pchange = c('HGVSp_Short', 'Protein_Change', 'AAChange')
    if(length(pchange[pchange %in% colnames(mut)]) > 0){
      pchange = suppressWarnings(pchange[pchange %in% colnames(mut)][1])
      message(paste0("Assuming protein change information are stored under column ", pchange,". Use argument AACol to override if necessary."))
      colnames(mut)[which(colnames(mut) == pchange)] = 'AAChange_'
    }else{
      message('Available fields:')
      print(colnames(mut))
      stop('AAChange field not found in MAF. Use argument AACol to manually specifiy field name containing protein changes.')
    }
  }else{
    if(length(which(colnames(mut) == AACol)) == 0){
      message('Available fields:')
      print(colnames(mut))
      stop(paste0("Column ", AACol, " not found."))
    }else{
      colnames(mut)[which(colnames(mut) == AACol)] = 'AAChange_'
    }
  }

  prot.dat = mut[Hugo_Symbol %in% geneID, .(Variant_Type, Variant_Classification, AAChange_)]
  if(nrow(prot.dat) == 0){
    stop(paste(geneID, 'does not seem to have any mutations!', sep=' '))
  }

  prot = gff[HGNC %in% geneID]

  if(nrow(prot) == 0){
    stop(paste('Structure for protein', geneID, 'not found.', sep=' '))
  }

  if(!is.null(refSeqID)){
    prot = prot[refseq.ID == refSeqID]
    if(nrow(prot) == 0){
      stop(paste0(refSeqID, " not found!"))
    }
  } else if(!is.null(proteinID)){
    prot = prot[protein.ID == proteinID]
    if(nrow(prot) == 0){
      stop(paste0(refSeqID, " not found!"))
    }
  } else{
    txs = unique(prot$refseq.ID)
    if(length(txs) > 1){
      message(paste(length(txs), ' transcripts available. Use arguments refSeqID or proteinID to manually specify tx name.', sep = ''))
      print(prot[!duplicated(protein.ID),.(HGNC, refseq.ID, protein.ID, aa.length)])
      prot = prot[which(prot$aa.length == max(prot$aa.length)),]
      if(length(unique(prot$refseq.ID)) > 1){
        prot = prot[which(prot$refseq.ID == unique(prot[,refseq.ID])[1]),]
        message(paste('Using longer transcript', unique(prot[,refseq.ID])[1], 'for now.', sep=' '))
      } else{
        message(paste('Using longer transcript', unique(prot[,refseq.ID])[1], 'for now.', sep=' '))
      }
    }
  }

  #Legth of protein
  len = as.numeric(max(prot$aa.length, na.rm = TRUE))
  #Remove NA's
  #prot = prot[!is.na(Label)]
  prot = prot[,domain_lenght := End - Start][order(domain_lenght, decreasing = TRUE)][,domain_lenght := NULL]

  #hard coded colors for variant classification if user doesnt provide any

  sampleSize = as.numeric(maf@summary[ID %in% 'Samples', summary])
  mutRate = round(getGeneSummary(x = maf)[Hugo_Symbol %in% geneID, MutatedSamples]/sampleSize*100, digits = 2)
  cbioSubTitle = geneID
  if(showMutationRate){
    cbioSubTitle = substitute(paste(italic(cbioSubTitle), " : [Somatic Mutation Rate: ", mutRate, "%]"))
  }

  if(cBioPortal){
    vc = c("Nonstop_Mutation", "Frame_Shift_Del", "Missense_Mutation",
           "Nonsense_Mutation", "Splice_Site", "Frame_Shift_Ins", "In_Frame_Del", "In_Frame_Ins")
    vc.cbio = c("Truncating", "Truncating", "Missense", "Truncating", "Truncating", "Truncating",
                "In-frame", "In-frame")
    names(vc.cbio) = vc
    col = grDevices::adjustcolor(col = c("black", "#33A02C", "brown"), alpha.f = 0.7)
    col = c('Truncating' = col[1], 'Missense' = col[2], 'In-frame' = col[3])
  }else{
    if(is.null(colors)){
      col = get_vcColors(alpha = 0.7, named = TRUE)
    }else{
      col = colors
    }
  }

  #prot.dat = prot.dat[Variant_Classification != 'Splice_Site']
  #Remove 'p.'
  prot.spl = strsplit(x = as.character(prot.dat$AAChange_), split = '.', fixed = TRUE)
  prot.conv = sapply(sapply(prot.spl, function(x) x[length(x)]), '[', 1)

  prot.dat[,conv := prot.conv]
  #If conversions are in HGVSp_long (default HGVSp) format, we will remove strings Ter followed by anything (e.g; p.Asn1986GlnfsTer13)
  pos = gsub(pattern = 'Ter.*', replacement = '',x = prot.dat$conv)

  #Following parsing takes care of most of HGVSp_short and HGVSp_long format
  pos = gsub(pattern = '[[:alpha:]]', replacement = '', x = pos)
  pos = gsub(pattern = '\\*$', replacement = '', x = pos) #Remove * if nonsense mutation ends with *
  pos = gsub(pattern = '^\\*', replacement = '', x = pos) #Remove * if nonsense mutation starts with *
  pos = gsub(pattern = '\\*.*', replacement = '', x = pos) #Remove * followed by position e.g, p.C229Lfs*18


  #pos = as.numeric(sapply(strsplit(x = pos, split = '_', fixed = TRUE), '[[', 1))
  pos = as.numeric(sapply(X = strsplit(x = pos, split = '_', fixed = TRUE), FUN = function(x) x[1]))
  prot.dat[,pos := abs(pos)]

  if(nrow( prot.dat[is.na(pos)]) > 0){
    message(paste('Removed', nrow( prot.dat[is.na(prot.dat$pos),]), 'mutations for which AA position was not available', sep = ' '))
    #print(prot.dat[is.na(pos)])
    prot.dat = prot.dat[!is.na(pos)]
  }

  prot.snp.sumamry = prot.dat[,.N, .(Variant_Classification, conv, pos)]
  colnames(prot.snp.sumamry)[ncol(prot.snp.sumamry)] = 'count'
  maxCount = max(prot.snp.sumamry$count, na.rm = TRUE)

  prot.snp.sumamry = prot.snp.sumamry[order(pos),]
  #prot.snp.sumamry$distance = c(0,diff(prot.snp.sumamry$pos))

  if(cBioPortal){
    prot.snp.sumamry$Variant_Classification = vc.cbio[as.character(prot.snp.sumamry$Variant_Classification)]
  }

  if(maxCount <= 5){
    prot.snp.sumamry$count2 = 1+prot.snp.sumamry$count
    lim.pos = 2:6
    lim.lab = 1:5
  }else{
    prot.snp.sumamry$count2 = 1+(prot.snp.sumamry$count * (5/max(prot.snp.sumamry$count)))
    lim.pos = prot.snp.sumamry[!duplicated(count2), count2]
    lim.lab = prot.snp.sumamry[!duplicated(count2), count]
  }

  if(length(lim.pos) > 6){
    lim.dat = data.table::data.table(pos = lim.pos, lab = lim.lab)
    lim.dat[,posRounded := round(pos)]
    lim.dat = lim.dat[!duplicated(posRounded)]
    lim.pos = lim.dat[,pos]
    lim.lab = lim.dat[,lab]
  }

  if(!defaultYaxis){
    lim.pos = c(min(lim.pos), max(lim.pos))
    lim.lab = c(min(lim.lab), max(lim.lab))
  }

  clusterSize = 10 #Change this later as an argument to user.
  if(repel){
    prot.snp.sumamry = repelPoints(dat = prot.snp.sumamry, protLen = len, clustSize = clusterSize)
  }else{
    prot.snp.sumamry$pos2 = prot.snp.sumamry$pos
  }

  xlimPos = pretty(0:max(prot$aa.length, na.rm = TRUE))
  xlimPos[length(xlimPos)] = max(prot$aa.length)

  # if(xlimPos[length(xlimPos)] - xlimPos[length(xlimPos)-1] <= 10){
  #   xlimPos = xlimPos[-(length(xlimPos)-1)]
  # }
  #xlimPos[length(xlimPos)] = max(as.numeric(prot$aa.length), na.rm = TRUE)

  #-----------------------------------
  #If user asks to label points, use ggrepel to label.
  if(!is.null(labelPos)){
    prot.snp.sumamry = data.table::data.table(prot.snp.sumamry)

    if(length(labelPos) == 1){
      if(labelPos != 'all'){
        prot.snp.sumamry$labThis = ifelse(test = prot.snp.sumamry$pos %in% labelPos, yes = 'yes', no = 'no')
        labDat = prot.snp.sumamry[labThis %in% 'yes']
      }else{
        labDat = prot.snp.sumamry
      }
    }else{
      prot.snp.sumamry$labThis = ifelse(test = prot.snp.sumamry$pos %in% labelPos, yes = 'yes', no = 'no')
      labDat = prot.snp.sumamry[labThis %in% 'yes']
    }

    if(nrow(labDat) == 0){
      message(paste0("Position ",labelPos, " doesn't seem to be mutated. Here are the mutated foci."))
      print(prot.snp.sumamry[,.(pos, conv, count, Variant_Classification)][order(pos)])
      stop()
      #return(prot.snp.sumamry[,.(mutations = sum(count)), pos][order(mutations, decreasing = TRUE)])
    }


    if(collapsePosLabel){
      uniquePos = unique(labDat[,pos2])
      labDatCollapsed = data.table::data.table()
      for(i in 1:length(uniquePos)){
        uniqueDat = labDat[pos2 %in% uniquePos[i]]
        if(nrow(uniqueDat) > 1){
          maxDat = max(uniqueDat[,count2])
          maxPos = unique(uniqueDat[,pos2])
          toLabel = uniqueDat[,conv]
          toLabel = paste(toLabel[1],paste(gsub(pattern = '^[A-z]*[[:digit:]]*', replacement = '', x = toLabel[2:length(toLabel)]), collapse = '/'), sep = '/')
          labDatCollapsed = rbind(labDatCollapsed, data.table::data.table(pos2 = maxPos, count2 = maxDat, conv = toLabel))
        }else{
          labDatCollapsed = rbind(labDatCollapsed, data.table::data.table(pos2 = uniqueDat[,pos2], count2 = uniqueDat[,count2], conv = uniqueDat[,conv]))
        }
      }
      labDat = labDatCollapsed
    }
  }


  #-----------------------------------
  #Base
  domains = unique(prot[,Label])
  domain_cols = get_domain_cols()

  if(length(domains) > length(domain_cols)){
    domain_cols = sample(colours(), size = length(domains), replace = FALSE)
  }

  domain_cols = domain_cols[1:length(domains)]
  domain_cols = grDevices::adjustcolor(col = domain_cols, alpha.f = domainAlpha)
  names(domain_cols) = domains

  col = col[unique(as.character(prot.snp.sumamry[,Variant_Classification]))]

  if(showLegend){
    lo = matrix(data = c(1, 1, 2, 2), nrow = 2, byrow = TRUE)
    graphics::layout(mat = lo, heights = c(4, 1.25))
    par(mar = c(1, 2.5, 2, 1))
  }else{
    par(mar = c(2.5, 2.5, 2, 1))
  }


  plot(0, 0, pch = NA, ylim = c(0, 6.5), xlim = c(0, len), axes = FALSE, xlab = NA, ylab = NA)
  rect(xleft = 0, ybottom = 0.2, xright = len, ytop = 0.8, col = "#95a5a6", border = bgBorderCol)
  axis(side = 1, at = xlimPos, labels = xlimPos, lwd = 1.2, font = 1,
       cex.axis = axisTextSize[1], line = -0.4)
  axis(side = 2, at = lim.pos, labels = lim.lab, lwd = 1.2, font = 1, las = 2,
       cex.axis = axisTextSize[2])
  #mtext(text = "# Mutations", side = 2, line = 1.5, font = 1)
  segments(x0 = prot.snp.sumamry[,pos2], y0 = 0.8, x1 = prot.snp.sumamry[,pos2], y1 = prot.snp.sumamry[,count2-0.03], lwd = 1.2, col = "gray70")
  point_cols = col[as.character(prot.snp.sumamry$Variant_Classification)]
  points(x = prot.snp.sumamry[,pos2], y = prot.snp.sumamry[,count2], col = point_cols, pch = 16, cex = pointSize)

  prot[, domainCol := domain_cols[prot[, Label]]]
  if(roundedRect){
    if(requireNamespace("berryFunctions", quietly = TRUE)){
      for(i in 1:nrow(prot)){
        berryFunctions::roundedRect(xleft = prot[i,Start], ybottom = 0.1, xright = prot[i,End], ytop = 0.9, col = prot[i, domainCol], border = domainBorderCol, rounding = 0.08)
      }
    }else{
      #warning("Package berryFunctions needed for roundedRect to work. Please install it and try again.")
      rect(xleft = prot[,Start], ybottom = 0.1, xright = prot[,End], ytop = 0.9, col = prot[,domainCol], border = domainBorderCol)
    }
  }else{
    rect(xleft = prot[,Start], ybottom = 0.1, xright = prot[,End], ytop = 0.9, col = prot[,domainCol], border = domainBorderCol)
  }


  title(main = cbioSubTitle, adj = 0, font.main = 2, cex.main = titleSize[1], line = 0.8)
  title(main = unique(prot[,refseq.ID]), adj = 0, font.main = 1, line = -0.5, cex.main = titleSize[2])

  if(showDomainLabel){
    if(labelOnlyUniqueDoamins){
      prot = prot[!duplicated(Label)]
    }
    prot$pos = rowMeans(x = prot[,.(Start, End)], na.rm = FALSE)
    text(y = 0.5, x = prot$pos, labels = prot$Label, font = 3, cex = domainLabelSize)
  }

  if(!is.null(labelPos)){
    #prot.snp.sumamry = repelPoints(dat = prot.snp.sumamry, protLen = len, clustSize = 5)
    text(x = labDat[,pos2], y = labDat[,count2+0.45], labels = labDat[,conv],
         font = 1, srt = labPosAngle, cex = labPosSize, adj = 0.1)
  }

  if(showLegend){
    par(mar = c(0, 0.5, 1, 0), xpd = TRUE)

    plot(NULL,ylab='',xlab='', xlim=0:1, ylim=0:1, axes = FALSE)
    lep = legend("topleft", legend = names(col), col = col,  bty = "n", border=NA,
                 xpd = TRUE, text.font = 1, pch = 16, xjust = 0, yjust = 0,
                 cex = legendTxtSize, y.intersp = 1.5, x.intersp = 1,
                 pt.cex = 1.2 * legendTxtSize, ncol = ceiling(length(col)/4))

    x_axp = 0+lep$rect$w

    if(!showDomainLabel){
      if(length(domain_cols) <= 4){
        n_col = 1
      }else{
        n_col = (length(domain_cols) %/% 4)+1
      }

      lep = legend(x = x_axp, y = 1, legend = names(domain_cols),
                   col = domain_cols, border = NA,
                   ncol= n_col, pch = 15, xpd = TRUE, xjust = 0, bty = "n",
                   cex = legendTxtSize, title = "Domains",
                   title.adj = 0, pt.cex = 1.2 * legendTxtSize)
    }
  }

  if(printCount){
    print(prot.snp.sumamry[,.(pos, conv, count, Variant_Classification)][order(pos)])
    #print(prot.snp.sumamry[,.(mutations = sum(count)), pos][order(mutations, decreasing = TRUE)])
  }
}

Try the maftools package in your browser

Any scripts or data that you put into this service are public.

maftools documentation built on Feb. 6, 2021, 2 a.m.