Description Usage Arguments Details Value Author(s) References See Also Examples
View source: R/classifyLDAsc.R
Function to search by groups of few genes, also called cliques, that can discriminate (or classify) between two distinct biological sample types, using the Fisher's linear discriminant analysis. This function uses the search and choose method.
1 2 3 | classifyLDAsc(obj=NULL, sLabelID="Classification", func="wilcox.test",
facToClass=NULL, gNameID="GeneName", geneGrp=1, path=NULL,
nGenes=3, cliques=100, sortBy="cv")
|
obj |
object of class |
sLabelID |
character string with the identification of the sample label to be used. |
func |
string specifying the function to be used to search by the initial one-dimensional classifiers, like 'wilcox.test' or 't.test'. |
facToClass |
named list with 2 character vectors specifying the samples to be compared. If NULL (default) the first 2 types of sLabelID are used. |
gNameID |
character string with the identification of gene label ID. |
geneGrp |
character or integer specifying the gene group to be
tested ( |
path |
character or integer specifying the gene network to be
tested ( |
nGenes |
integer specifying the number of genes in the clique, or classifier. |
cliques |
integer specifying the number of cliques or classifiers to be generated. |
sortBy |
character string with the field to be sorted. May be 'cv' (default) or 'svd'. |
This function implements the method known as Search and choose
proposed by Cristo (2003). If you want to use an exhaustive search use
the function classifyLDA
.
This method uses the function lda
from package
MASS to search by classifiers using Fisher's linear
discriminant analysis. It is possible to search classifiers by Support
Vector Machines and k-nearest neighbour classifiers using the
functions classifySVMsc
and
classifyKNNsc
, respectively.
The result of this function is an object of class maigesClass
.
Elier B. Cristo, adapted by Gustavo H. Esteves <gesteves@vision.ime.usp.br>
Cristo, E.B. Metodos Estatisticos na Analise de Experimentos de Microarray. Masther's thesis, Instituto de Matematica e Estatistica - Universidade de Sao Paulo, 2003 (in portuguese).
lda
, classifyLDA
,
classifySVMsc
and classifyKNNsc
.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | ## Loading the dataset
data(gastro)
## Doing LDA classifier with 2 genes for the 6th gene group comparing
## the 2 categories from 'Type' sample label.
gastro.class = classifyLDAsc(gastro.summ, sLabelID="Type",
gNameID="GeneName", nGenes=2, geneGrp=1, cliques=10)
gastro.class
## To do classifier with 3 genes for the 6th gene group comparing
## normal vs adenocarcinomas from 'Tissue' sample label
gastro.class = classifyLDAsc(gastro.summ, sLabelID="Tissue",
gNameID="GeneName", nGenes=3, geneGrp=1, cliques=10,
facToClass=list(Norm=c("Neso","Nest"), Ade=c("Aeso","Aest")))
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.