Description Usage Arguments Details Value Author(s) References See Also Examples
Function to construct Relevance Networks comparing two distinct biological types.
1 2 3 |
data |
object of class |
gLabelID |
character string giving the identification of gene label ID. |
sLabelID |
character string giving the identification of sample label ID. |
geneGrp |
character string (or numeric index) specifying the gene group to calculate the correlation values between them. If NULL (together with path) all genes are used. |
path |
character string (or numeric index) specifying the gene network to calculate the correlation values between them. If NULL (together with geneGrp) all genes are used. |
samples |
a named list with two character vectors specifying the two groups that must be compared. |
type |
type of correlation to be calculated. May be 'Rpearson' (default), 'pearson', 'kendall' or 'spearman'. |
... |
additional parameters for functions
|
This method uses the function cor
to calculate
the usual correlation values or robustCorr
to calculate
a robust correlation using an idea similar to the leave-one-out.
The
correlation values are calculated for pairs of genes in the two groups
specified by the argument samples
, then a Fisher's Z
transformation are done to calculate the significance for the
difference between the two correlation values, this is implemented in
the function compCorr
. This method was first used in the
work from Gomes et al. (2005).
The result of this function is an object of class maigesRelNetM
.
Gustavo H. Esteves <gesteves@vision.ime.usp.br>
Gomes, L.I.; Esteves, G.H.; Carvalho, A.F.; Cristo, E.B.; Hirata Jr., R.; Martins, W.K.; Marques, S.M.; Camargo, L.P.; Brentani, H.; Pelosof, A.; Zitron, C.; Sallum, R.A.; Montagnini, A.; Soares, F.A.; Neves, E.J. & Reis, L.F. Expression Profile of Malignant and Nonmalignant Lesions of Esophagus and Stomach: Differential Activity of Functional Modules Related to Inflammation and Lipid Metabolism, Cancer Research, 65, 7127-7136, 2005 (http://cancerres.aacrjournals.org/cgi/content/abstract/65/16/7127)
cor
, robustCorr
compCorr
, maigesRelNetM
,
plot.maigesRelNetM
,
image.maigesRelNetM
.
1 2 3 4 5 6 7 8 | ## Loading the dataset
data(gastro)
## Constructing the relevance network for sample
## 'Tissue' comparing 'Neso' and 'Aeso' for the 1st gene group
gastro.net = relNetworkM(gastro.summ, sLabelID="Tissue",
samples = list(Neso="Neso", Aeso="Aeso"), geneGrp=11,
type="Rpearson")
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.