Nothing
.runBarcodeRankDrops <- function(barcode.matrix, lower=lower,
fit.bounds=fit.bounds,
df=df) {
## Convert to sparse matrix if not already in that format
barcode.matrix <- .convertToMatrix(barcode.matrix)
output <- DropletUtils::barcodeRanks(m = barcode.matrix, lower=lower,
fit.bounds=fit.bounds,
df=df)
knee.ix <- as.integer(output@listData$total >= S4Vectors::metadata(output)$knee)
inflection.ix <- as.integer(output@listData$total >= S4Vectors::metadata(output)$inflection)
rank.ix<- as.integer(output$rank)
total.ix<- as.integer(output$total)
fitted.ix<- as.integer(output$fitted)
result <- cbind(knee.ix, inflection.ix, rank.ix, total.ix, fitted.ix)
colnames(result) <- c("dropletUtils_barcodeRank_knee",
"dropletUtils_barcodeRank_inflection",
"dropletUtils_barcodeRank_rank",
"dropletUtils_barcodeRank_total",
"dropletUtils_barcodeRank_fitted")
result.list <- list(result,
S4Vectors::metadata(output)$knee,
S4Vectors::metadata(output)$inflection)
names(result.list) <- c("matrix","knee","inflection")
return(result.list)
}
#' @title Identify empty droplets using \link[DropletUtils]{barcodeRanks}.
#' @description Run \link[DropletUtils]{barcodeRanks} on a count matrix
#' provided in a \link[SingleCellExperiment]{SingleCellExperiment} object.
#' Distinguish between droplets containing cells and ambient RNA in a
#' droplet-based single-cell RNA sequencing experiment.
#' @param inSCE A \link[SingleCellExperiment]{SingleCellExperiment} object.
#' Must contain a raw counts matrix before empty droplets have been removed.
#' @param useAssay A string specifying which assay in the SCE to use.
#' @param sample Character vector. Indicates which sample each cell belongs to
#' \link[DropletUtils]{emptyDrops} will be run on cells from each sample separately.
#' If NULL, then all cells will be processed together. Default \code{NULL}.
#' @param lower See \link[DropletUtils]{emptyDrops} for more information. Default \code{100}.
#' @param fitBounds See \link[DropletUtils]{emptyDrops} for more information. Default \code{NULL}.
#' @param df See \link[DropletUtils]{emptyDrops} for more information. Default \code{20}.
#' @return A \link[SingleCellExperiment]{SingleCellExperiment} object with the
#' \link[DropletUtils]{barcodeRanks} output table appended to the
#' \link{colData} slot. The columns include
#' \emph{dropletUtils_BarcodeRank_Knee} and \emph{dropletUtils_BarcodeRank_Knee}
#' Please refer to the documentation of \link[DropletUtils]{barcodeRanks} for
#' details.
#' @examples
#' # The following unfiltered PBMC_1k_v3 data were downloaded from
#' # https://support.10xgenomics.com/single-cell-gene-expression/datasets/3.0.0
#' # /pbmc_1k_v3
#' # Only the top 10 cells with most counts and the last 10 cells with non-zero
#' # counts are included in this example.
#' # This example only serves as an proof of concept and a tutoriol on how to
#' # run the function. The results should not be
#' # used for drawing scientific conclusions.
#' data(scExample, package = "singleCellTK")
#' sce <- runBarcodeRankDrops(inSCE = sce)
#' @export
#' @importFrom SummarizedExperiment colData colData<-
runBarcodeRankDrops <- function(inSCE,
sample = NULL,
useAssay = "counts",
lower = 100,
fitBounds = NULL,
df = 20
) {
if(!is.null(sample)) {
if(length(sample) != ncol(inSCE)) {
stop("'sample' must be the same length as the number of columns in 'inSCE'")
}
} else {
sample = rep(1, ncol(inSCE))
}
message(paste0(date(), " ... Running 'barcodeRanks'"))
## Getting current arguments values
#argsList <- as.list(formals(fun = sys.function(sys.parent()), envir = parent.frame()))
argsList <- mget(names(formals()),sys.frame(sys.nframe()))
rank <- list()
## Define result matrix for all samples
output <- S4Vectors::DataFrame(row.names = colnames(inSCE),
dropletUtils_BarcodeRank_Knee = integer(ncol(inSCE)),
dropletUtils_BarcodeRank_Inflection = integer(ncol(inSCE)))
## Loop through each sample and run barcodeRank
samples <- unique(sample)
metaOutList <- list()
for (i in seq_len(length(samples))) {
sceSampleInd <- sample == samples[i]
sceSample <- inSCE[, sceSampleInd]
## Define meta matrix for each subinSCE
metaOutput <- S4Vectors::DataFrame(row.names = colnames(sceSample),
dropletUtils_barcodeRank_rank = integer(ncol(sceSample)),
dropletUtils_barcodeRank_total = integer(ncol(sceSample)),
dropletUtils_barcodeRank_fitted = integer(ncol(sceSample)),
dropletUtils_barcodeRank_knee = integer(ncol(sceSample)),
dropletUtils_barcodeRank_inflection = integer(ncol(sceSample)),
sample = colData(sceSample)[["sample"]])
mat <- SummarizedExperiment::assay(sceSample, i = useAssay)
result <- .runBarcodeRankDrops(barcode.matrix = mat, lower=lower,
fit.bounds=fitBounds,
df=df)
result.matrix <- result$matrix
output[sceSampleInd, ] <- result.matrix[, c("dropletUtils_barcodeRank_knee", "dropletUtils_barcodeRank_inflection")]
metaCols <- c("dropletUtils_barcodeRank_rank", "dropletUtils_barcodeRank_total",
"dropletUtils_barcodeRank_fitted")
metaOutput[sceSampleInd, metaCols] <- result.matrix[, metaCols]
metaOutput[sceSampleInd,"dropletUtils_barcodeRank_knee"] <- rep(result$knee, sum(sceSampleInd))
metaOutput[sceSampleInd,"dropletUtils_barcodeRank_inflection"] <- rep(result$inflection, sum(sceSampleInd))
# Remove duplicated Rank
metaOutput <- metaOutput[!duplicated(metaOutput$dropletUtils_barcodeRank_rank), ]
metaOutList[[samples[i]]] <- metaOutput
}
colData(inSCE) = cbind(colData(inSCE), output)
S4Vectors::metadata(inSCE)$runBarcodeRanksMetaOutput <- metaOutList
inSCE@metadata$runBarcodeRankDrops <- argsList[-1]
inSCE@metadata$runBarcodeRankDrops$packageVersion <- utils::packageDescription("DropletUtils")$Version
return(inSCE)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.