Description Usage Arguments Details Value Note Author(s) References See Also Examples
Functions thinProcess
simulates a spike train and mkSimFct
returns a simulating function from a gssanova
fitted
model. Ogata's thinning simulation
method is used. Functions maxIntensity
,
mkSelf
and mkMappedI
are utility functions for the first
two. Function mkPostSimAnalysis
returns a function analysing a
simulated spike train. Functions mkSimFct
and
mkPostSimAnalysis
return functions which can in principle be
safely used in parallel applications, that is, they have everything they
need in their closure.
1 2 3 4 5 6 7 8 9 | thinProcess(object, m2uFctList, trueData, formerSpikes,
intensityMax, ...)
maxIntensity(object, dfWithTime, ...)
mkSelf(m2uSelf)
mkMappedI(m2uI, lag = 1)
mkSimFct(object, m2uFctList, trueData, formerSpikes,
intensityMax, ...)
mkPostSimAnalysis(stList, trainNumber = 1, timeWindow,
objects, dfFct)
|
object |
A |
m2uFctList |
A list of functions. There should be as many functions as
there are "internal" variables in |
m2uSelf |
The map to uniform function used to transform the actual elapsed time since the last spike values before fitting the model. |
m2uI |
The map to uniform function used to transform the actual former ISI durations before fitting the model. |
lag |
The considered lag (integer > 0). |
trueData |
A data frame containing the "true data" of the simulated epoch. This is to ensure that "external" variables such as the elapsed time since the last spike of a functionally coupled neuron are available. |
formerSpikes |
A vector of previous spike times. This is to make the computation of former inter spike intervals possible in every case. |
intensityMax |
The value of the maximal intensity. If missing function
|
dfWithTime |
A data frame with one variable named "time". The latter variable is used to obtain the bin width with which the original spike train was discretized. |
stList |
The list of |
trainNumber |
An integer, the index of the modeled and simulated
spike train in |
timeWindow |
A numeric vector of length 1 or 2. This argument
specifies the time domain over which the fits contained in argument
objects was performed. It is implicitly assumed that the (partial)
simulation was performed outside this time domain. When a vector of
length 1 is used the fitting time domain is taken as
|
objects |
A list of |
dfFct |
A function whose argument is a the same as the first
argument of function |
... |
Additional arguments passed to |
Function thinProcess
simulates a spike train with Ogata's
thinning method (Ogata, 1981). The latter method required the maximal
intensity of the process to be known. If such is not the case, that
is, if argument intensityMax
is left missing
, a proposed
maximal intensity is obtained with function maxIntensity
. If
during the simulation an actual intensity larger than the given
intensityMax
occurs, the simulation is interrupted and an error
message is generated.
Function maxIntensity
uses the central point of the variable
space as its intial guess. The "BFGS" method of optim
is
used to find the maximal intensity.
Function mkPostSimAnalysis
uses function
findGlobals
in order to find among the
functions called by dfFct
the ones which are defined in the
global environment. These functions are copied in the environment
(Gentleman and Ihaka, 2000) of the function returned by
mkPostSimAnalysis
. If the global environment defined function
called by dfFct
do not call themselves over functions
defined in the global environment, the returned function can be safely
used as argument fun
of package snow
's clusterApply
function.
thinProcess
returns a spikeTrain
object.
maxIntensity
returns the "proposed" maximal intensity (in Hz).
mkSelf
returns a function
taking two arguments:
self(proposedtime,st)
.
mkMappedI
returns a function
taking two arguments:
function(proposedtime,st)
.
mkSimFct
returns a function simulating a spikeTrain
object. The simulation is done with function thinProcess
. The
returned function takes no argument. The maximal intensity required by
the thinning method is stored in the closure of the returned function.
mkPostSimAnalysis
returns a function taking a spikeTrain
object as its single argument. This function returns a list of
lists. Each list correspond to one of the models in argument
objects
. Each sub list has two components: lpp
(the log
predictive probability) and ttt
(the time transformed train, a
CountingProcessSamplePath object).
These functions are designed to implement a rather specific type of analysis which is exposed in the "big STAR tutorial" available at: http://sites.google.com/site/spiketrainanalysiswithr/. The exemple below shows a "complete" analysis, more details and other exemples can be found in the big tutorial.
Christophe Pouzat christophe.pouzat@gmail.com
Gentleman, R. and Ihaka, R. (2000) Lexical Scope and Statistical Computing. Journal of Computational and Graphical Statistics 9: 491-508.
Ogata, Y. (1981) On Lewis' simulation method for point processes. IEEE Transactions on Information Theory IT-29: 23-31.
gssanova
,
as.spikeTrain
,
mkGLMdf
,
mkCPSP
,
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 | ## Not run:
## The run times given in the sequel were measured on a laptop
## with a dual core CPU: 2x Intel Core 2 Duo CPU P9500 @ 2.53GHz
## The RAM was 4 GB large. The PC ran Ubuntu 9.04 and R-2.9.2
## compiled with a dynamically link ATLAS version of BLAS.
## Start by loading the data set into the work space.
data(e060824spont)
## Get a summary of neuron 1 spike train.
summary(e060824spont[["neuron 1"]])
## Run an automatic analysis of the train (takes ~ 4.22 s)
reportHTML(e060824spont[["neuron 1"]],filename="e060824spont_1",otherST=e060824spont[c(2)],maxiter=100)
## The renewal tests show that the discharge is not the one of
## a renewal process. The cross-correlogram shows no sign of
## coupling between the two neurons of the data set.
## Compute the partial autocorrelation function to get an idea
## of how many previous interspike intervals (ISIs) should be
## included in the model.
acf(diff(e060824spont[["neuron 1"]]),type="partial")
## The pacf plot suggests that the last ISI should be enough.
## Build the data frame.
DFA <- mkGLMdf(e060824spont[["neuron 1"]],0.004,0,59)
DFA <- within(DFA,i1 <- isi(DFA,lag=1))
DFA <- DFA[complete.cases(DFA),]
## look a the ECDF of the elapsed time since the last spike,
## that is, variable lN.1 of the data frame and of the last
## ISI (variable i1 of the data frame).
layout(matrix(1:2,nc=2))
with(DFA,plot(ecdf(lN.1),pch="."))
with(DFA,lines(range(lN.1),c(0,1),col=2,lty=2))
with(DFA,plot(ecdf(i1),pch="."))
with(DFA,lines(range(i1),c(0,1),col=2,lty=2))
## The distributions of these varaibles are clearly (and not
## surprisingly) non-uniform.
## Build emprirical functions mapping the two variables to uniform
## ones
m2u1 <- mkM2U(DFA,"lN.1",0,28.5)
m2ui <- mkM2U(DFA,"i1",0,28.5,maxiter=200)
DFA <- within(DFA,e1t <- m2u1(lN.1))
DFA <- within(DFA,i1t <- m2ui(i1))
## Cehck that the transformations did their job.
with(DFA,plot(ecdf(e1t),pch="."))
with(DFA,lines(range(e1t),c(0,1),col=2,lty=2))
with(DFA,plot(ecdf(i1t),pch="."))
with(DFA,lines(range(i1t),c(0,1),col=2,lty=2))
## The heavy computations to follow will be performed
## in parallel using the snow package.
library(snow)
## Define the number of slaves
nbSlaves <- 2
## Create the cluster.
cl <- makeCluster(rep("localhost",nbSlaves),type="SOCK")
## load STAR on each slave.
clusterEvalQ(cl,library(STAR))
## Define a function making a function performing the
## fit with gssanova and suitable for a parallel implementation.
## The returned function does in addition time transform the
## spike train on the time window not used for the fit.
mkPFct <- function(df=DFA) {
df
PFct <- function(gtime,
fmla=event~e1t*i1t,
seed=20061001) {
GF <- gssanova(fmla,
data=subset(df, time %in% gtime),
family="binomial",
seed=seed)
tt <- GF %tt% subset(df, !(time %in% gtime))
list(GF=GF,tt=tt)
}
PFct
}
PFct1 <- mkPFct()
## Now PFct1 returns a list with two elements: the "fit object" (GF)
## and the time transformed train (tt)
## Create a list suitable as the second argument for clusterApply
gtList <- list(early=with(DFA,time[time<=29.5]),
late=with(DFA,time[time>29.5])
)
## Fit and test a model with interaction between the (mapped)
## ellasped time since the last spike and the (mapped) last
## ISI. This takes ~ 95 s.
GF1.e060824spont.1 <- clusterApply(cl, gtList, PFct1)
## Look a the test battery
plot(summary(GF1.e060824spont.1[[1]][[2]]),which=c(1,2,4,6))
plot(summary(GF1.e060824spont.1[[2]][[2]]),which=c(1,2,4,6))
## Fit and test a model without interaction between the (mapped)
## ellasped time since the last spike and the (mapped) last
## ISI. This takes ~ 61 s.
GF2.e060824spont.1 <- clusterApply(cl, gtList, PFct1,fmla=event ~ e1t+i1t)
## Look a the test battery
plot(summary(GF2.e060824spont.1[[1]][[2]]),which=c(1,2,4,6))
plot(summary(GF2.e060824spont.1[[2]][[2]]),which=c(1,2,4,6))
## Compute the "predictive log probability" with Model 2
## (without interaction). This takes ~ 1.6 s
(GF2.e060824spont.1.logProb <- predictLogProb(GF2.e060824spont.1[[1]][[1]],subset(DFA,time>29.5))+predictLogProb(GF2.e060824spont.1[[2]][[1]],subset(DFA,time<=29.5)))
## Compute the "predictive log probability" with Model 1
## (with interaction). This takes ~ 3.5 s
(GF1.e060824spont.1.logProb <- predictLogProb(GF1.e060824spont.1[[1]][[1]],subset(DFA,time>29.5))+predictLogProb(GF1.e060824spont.1[[2]][[1]],subset(DFA,time<=29.5)))
## Prepare the simulations using Model 1 and 2
## Define a function initializing a mrg32k3a RNG from
## the rstream package on each slave
initMRG32k3a <- function(cl) {
clusterEvalQ(cl,library(rstream))
invisible(clusterCall(cl,
function() {
cmd <- parse(text=".s <- new(\"rstream.mrg32k3a\")")
eval(cmd,env=globalenv())
}
)
)
cat(paste(paste(clusterEvalQ(cl,rstream.sample(.s)),collapse=","),"\n"))
invisible(clusterEvalQ(cl,rstream.reset(.s)))
}
## Define a function returning a list of independent and packed
## mrg32k3a rngs.
mkLecuyerList <- function(cl, ## a snow cluster
seed,
...) {
nbWorkers <- length(cl)
lecuyerList <- vector(mode="list",length=nbWorkers)
for (wIdx in 1:nbWorkers) {
if (wIdx == 1) {
if (!missing(seed)) lecuyerList[[1]] <- new("rstream.mrg32k3a",seed=seed)
else lecuyerList[[1]] <- new("rstream.mrg32k3a")
} else lecuyerList[[wIdx]] <- new("rstream.mrg32k3a")
rstream.packed(lecuyerList[[wIdx]]) <- TRUE
}
lecuyerList
}
## Define a function setting the uniform rng of each slave
## to one of the independent mrg32k3a rngs created by
## mkLecuyerList.
clusterSetupRSTREAM <- function(cl, ## a snow cluster
lecuyerList
) {
setLecuyer <- function(packedlecuyer) {
assign("lecuyer",packedlecuyer,env=globalenv())
cmd <- parse(text="rstream.packed(lecuyer)<-FALSE")
eval(cmd,env=globalenv())
}
clusterApply(cl,lecuyerList,setLecuyer)
clusterEvalQ(cl,rstream.RNG(lecuyer))
}
## Load package rstream on master.
library(rstream)
## Initialize mrg32k3a rngs on each slave.
initMRG32k3a(cl)
## Create the list of independent mrg32k3a rngs
## on master.
theList <- mkLecuyerList(cl,seed=rep(20061001,6))
## Set the uniform rng of each slave to one of the
## independent mrg32k3a rngs just created.
clusterSetupRSTREAM(cl,theList)
## Define a list of map to uniform functions
fList.e060824spont.1 <- list(e1t=mkSelf(m2u1), i1t=mkMappedI(m2ui))
## Define a simulating function from Model 1 fitted on the
## half of the data set.
simF1.e060824spont.1 <- mkSimFct(object=GF1.e060824spont.1[[1]][[1]],
m2uFctList=fList.e060824spont.1,
trueData=subset(DFA,time>29.5),
formerSpikes=with(DFA,time[event==1][time[event==1] <= 29.5])
)
## Define a simulating function from Model 2 fitted on the
## half of the data set.
simF2.e060824spont.1 <- mkSimFct(object=GF2.e060824spont.1[[1]][[1]],
m2uFctList=fList.e060824spont.1,
trueData=subset(DFA,time>29.5),
formerSpikes=with(DFA,time[event==1][time[event==1] <= 29.5])
)
## Define the number of simulations to carry out.
nbRep <- 100
## Simulate spike trains in parallel using Model 1.
## This takes ~ 670 s.
sim1.e060824spont.1 <- clusterApply(cl,
rep(nbRep/nbSlaves,nbSlaves),
function(n,SF) lapply(1:n, function(idx) SF()),
SF=simF1.e060824spont.1)
## Convert the returned list of lists into a single
## big list.
sim1.e060824spont.1 <- c(sim1.e060824spont.1[[1]],
sim1.e060824spont.1[[2]])
## Simulate spike trains in parallel using Model 1.
## This takes ~ 425 s.
sim2.e060824spont.1 <- clusterApply(cl,
rep(nbRep/nbSlaves,nbSlaves),
function(n,SF) lapply(1:n, function(idx) SF()),
SF=simF2.e060824spont.1)
## Convert the returned list of lists into a single
## big list.
sim2.e060824spont.1 <- c(sim2.e060824spont.1[[1]],
sim2.e060824spont.1[[2]])
## Define a function generating automatically the
## proper data frame from the simulated data.
mkDF.e060824spont.1 <- function(stList) {
DF <- mkGLMdf(stList,0.004,0,59)
DF <- within(DF,i1 <- isi(DF,lag=1))
DF <- DF[complete.cases(DF),]
DF <- within(DF,e1t <- m2u1(lN.1))
DF <- within(DF,i1t <- m2ui(i1))
DF
}
## Define a function analysis the simulated trains with
## both Model 1 and 2.
PSAFct <- mkPostSimAnalysis(e060824spont[[1]],1,29.5,list(GF1.e060824spont.1[[1]][[1]],GF2.e060824spont.1[[1]][[1]]),mkDF.e060824spont.1)
## Analyze the simulations done with Model 1.
## This takes ~ 400 s
sim1.e060824spont.1.psa <- clusterApply(cl,sim1.e060824spont.1,PSAFct)
## Analyze the simulations done with Model 2.
## This takes ~ 400 s
sim2.e060824spont.1.psa <- clusterApply(cl,sim2.e060824spont.1,PSAFct)
## Get the log predictive probability assuming Model 1 for
## simulations done with Model 1.
sim1.e060824spont.1.lpp1 <- sapply(sim1.e060824spont.1.psa, function(l) l[[1]]$lpp)
## Get the log predictive probability assuming Model 2 for
## simulations done with Model 1.
sim1.e060824spont.1.lpp2 <- sapply(sim1.e060824spont.1.psa, function(l) l[[2]]$lpp)
## Get the log predictive probability assuming Model 1 for
## simulations done with Model 2.
sim2.e060824spont.1.lpp1 <- sapply(sim2.e060824spont.1.psa, function(l) l[[1]]$lpp)
## Get the log predictive probability assuming Model 2 for
## simulations done with Model 2.
sim2.e060824spont.1.lpp2 <- sapply(sim2.e060824spont.1.psa, function(l) l[[2]]$lpp)
## Get the observed log predictive probability with each model.
e060824spont.1.lpp1 <- predictLogProb(GF1.e060824spont.1[[1]][[1]],subset(DFA,time>29.5))
e060824spont.1.lpp2 <- predictLogProb(GF2.e060824spont.1[[1]][[1]],subset(DFA,time>29.5))
## Get the difference of observed log predictive probabilities.
e060824spont.1.lppDiff <- e060824spont.1.lpp1 - e060824spont.1.lpp2
## Look at the correlation between the log predictive probabilities
## obtained with Model 1 and 2 with data simulated with Model 1.
plot(sim1.e060824spont.1.lpp1,sim1.e060824spont.1.lpp2,main="log prob with M2 vs log prob with M1 when M1 is true",xlab="log prob with M1",ylab="log prob with M2")
## Plot the ECDF of the log predictive probabilities obtained
## with Model 1 with data simulated with Model 1.
plot(ecdf(sim1.e060824spont.1.lpp1),pch=".",main="log prob with Model 1 when Model 1 is true")
## Show the observed value of this statistic.
segments(e060824spont.1.lpp1,0,e060824spont.1.lpp1,sum(sim1.e060824spont.1.lpp1 <= e060824spont.1.lpp1)/nbRep,col=2,lwd=2)
segments(-1600,sum(sim1.e060824spont.1.lpp1 <= e060824spont.1.lpp1)/nbRep,e060824spont.1.lpp1,sum(sim1.e060824spont.1.lpp1 <= e060824spont.1.lpp1)/nbRep,col=2,lwd=2)
## Plot the ECDF of the log predictive probabilities obtained
## with Model 2 with data simulated with Model 1.
plot(ecdf(sim1.e060824spont.1.lpp2),pch=".",main="log prob with Model 2 when Model 1 is true")
## Show the observed value of this statistic.
segments(e060824spont.1.lpp2,0,e060824spont.1.lpp2,sum(sim1.e060824spont.1.lpp2 <= e060824spont.1.lpp2)/nbRep,col=2,lwd=2)
segments(-1800,sum(sim1.e060824spont.1.lpp2 <= e060824spont.1.lpp2)/nbRep,e060824spont.1.lpp2,sum(sim1.e060824spont.1.lpp2 <= e060824spont.1.lpp2)/nbRep,col=2,lwd=2)
## Plot the ECDF of the difference of the log predictive probabilities
## obtained with data simulated with Model 1.
plot(ecdf(sim1.e060824spont.1.lpp1-sim1.e060824spont.1.lpp2),pch=".",main="log prob with M1 - log prob with M2 when M1 is true")
## Show the observed value of this statistic.
segments(e060824spont.1.lppDiff,0,e060824spont.1.lppDiff,sum(sim1.e060824spont.1.lpp1-sim1.e060824spont.1.lpp2<=e060824spont.1.lppDiff)/nbRep,col=2,lwd=2)
segments(-10,sum(sim1.e060824spont.1.lpp1-sim1.e060824spont.1.lpp2<=e060824spont.1.lppDiff)/nbRep,e060824spont.1.lppDiff,sum(sim1.e060824spont.1.lpp1-sim1.e060824spont.1.lpp2<=e060824spont.1.lppDiff)/nbRep,col=2,lwd=2)
## Look at the correlation between the log predictive probabilities
## obtained with Model 1 and 2 with data simulated with Model 2.
plot(sim2.e060824spont.1.lpp1,sim2.e060824spont.1.lpp2,main="log prob with M2 vs log prob with M1 when M2 is true",xlab="log prob with M1",ylab="log prob with M2")
## Plot the ECDF of the log predictive probabilities obtained
## with Model 1 with data simulated with Model 2.
plot(ecdf(sim2.e060824spont.1.lpp1),pch=".",main="log prob with Model 1 when Model 2 is true")
## Show the observed value of this statistic.
segments(e060824spont.1.lpp1,0,e060824spont.1.lpp1,sum(sim2.e060824spont.1.lpp1 <= e060824spont.1.lpp1)/nbRep,col=2,lwd=2)
segments(-2000,sum(sim2.e060824spont.1.lpp1 <= e060824spont.1.lpp1)/nbRep,e060824spont.1.lpp1,sum(sim2.e060824spont.1.lpp1 <= e060824spont.1.lpp1)/nbRep,col=2,lwd=2)
## Plot the ECDF of the log predictive probabilities obtained
## with Model 2 with data simulated with Model 2.
plot(ecdf(sim2.e060824spont.1.lpp2),pch=".",main="log prob with Model 2 when Model 2 is true")
## Show the observed value of this statistic.
segments(e060824spont.1.lpp2,0,e060824spont.1.lpp2,sum(sim2.e060824spont.1.lpp2 <= e060824spont.1.lpp2)/nbRep,col=2,lwd=2)
segments(-2000,sum(sim2.e060824spont.1.lpp2 <= e060824spont.1.lpp2)/nbRep,e060824spont.1.lpp2,sum(sim2.e060824spont.1.lpp2 <= e060824spont.1.lpp2)/nbRep,col=2,lwd=2)
## Plot the ECDF of the difference of the log predictive probabilities
## obtained with data simulated with Model 1.
## Make sure that the scale of the x axis is right.
xlim=c(min(c(-e060824spont.1.lppDiff,sim2.e060824spont.1.lpp2-sim2.e060824spont.1.lpp1)),max(sim2.e060824spont.1.lpp2-sim2.e060824spont.1.lpp1))
plot(ecdf(sim2.e060824spont.1.lpp2-sim2.e060824spont.1.lpp1),pch=".",main="log prob with M2 - log prob with M1 when M2 is true",xlim=xlim)
## Show the observed value of this statistic.
points(-e060824spont.1.lppDiff,0,pch=16,col=2)
## Stop the snow cluster.
stopCluster(cl)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.