| sqrtlink | R Documentation |
Computes the square root and folded square root transformations, including their inverse and their first two derivatives.
foldsqrtlink(theta, min = 0, max = 1, mux = sqrt(2),
inverse = FALSE, deriv = 0, short = TRUE, tag = FALSE)
sqrtlink(theta, inverse = FALSE, deriv = 0, short = TRUE,
tag = FALSE, c10 = c(2, -2))
theta |
Numeric or character. See below for further details. |
min, max, mux |
These are called |
inverse, deriv, short, tag |
Details at |
c10 |
Numeric, 2-vector |
The folded square root link function can be applied to
parameters that lie between L and U
inclusive.
Numerical values of theta
out of range result in NA or NaN.
More general information
can be found at alogitlink.
For foldsqrtlink with deriv = 0:
K (\sqrt{\theta-L} - \sqrt{U-\theta})
or
mux * (sqrt(theta-min) - sqrt(max-theta))
when inverse = FALSE,
and if inverse = TRUE then some more
complicated function that returns a NA unless
theta is between -mux*sqrt(max-min) and
mux*sqrt(max-min).
For sqrtlink with deriv = 0
and c10 = 1:0:
\sqrt{\theta}
when inverse = FALSE,
and if inverse = TRUE then the square
is returned.
For deriv = 1, then the function returns
d eta / d theta as a
function of theta
if inverse = FALSE,
else if inverse = TRUE then it
returns the reciprocal.
For foldsqrtlink,
the default has, if theta is 0 or 1,
the link function
value is -sqrt(2) and +sqrt(2)
respectively.
These are finite values, therefore one cannot use
this link function for
general modelling of probabilities because
of numerical problem,
e.g., with binomialff,
cumulative. See
the example below.
Thomas W. Yee
Links,
poissonff,
sloglink,
hdeff.
p <- seq(0.01, 0.99, by = 0.01)
foldsqrtlink(p)
max(abs(foldsqrtlink(foldsqrtlink(p), inverse = TRUE) - p)) # 0
p <- c(seq(-0.02, 0.02, by = 0.01), seq(0.97, 1.02, by = 0.01))
foldsqrtlink(p) # Has NAs
## Not run:
p <- seq(0.01, 0.99, by = 0.01)
par(mfrow = c(2, 2), lwd = (mylwd <- 2))
y <- seq(-4, 4, length = 100)
for (d in 0:1) {
matplot(p, cbind( logitlink(p, deriv = d),
foldsqrtlink(p, deriv = d)),
col = "blue", ylab = "transformation",
main = ifelse(d == 0, "Some probability links",
"First derivative"), type = "n", las = 1)
lines(p, logitlink(p, deriv = d), col = "green")
lines(p, probitlink(p, deriv = d), col = "blue")
lines(p, clogloglink(p, deriv = d), col = "red")
lines(p, foldsqrtlink(p, deriv = d), col = "tan")
if (d == 0) {
abline(v = 0.5, h = 0, lty = "dashed")
legend(0, 4.5, c("logitlink", "probitlink",
"clogloglink", "foldsqrtlink"),
lwd = 2, col = c("green", "blue",
"red", "tan"))
} else
abline(v = 0.5, lty = "dashed")
}
for (d in 0) {
matplot(y,
cbind( logitlink(y, deriv = d, inverse = TRUE),
foldsqrtlink(y, deriv = d, inverse = TRUE)),
type = "n", col = "blue", xlab = "transformation",
ylab = "p", lwd = 2, las = 1, main = if (d == 0)
"Some inverse probability link functions" else
"First derivative")
lines(y, logitlink(y, deriv=d, inverse=TRUE), col="green")
lines(y, probitlink(y, deriv=d, inverse=TRUE), col="blue")
lines(y, clogloglink(y, deriv=d, inverse=TRUE), col="red")
lines(y, foldsqrtlink(y, deriv=d, inverse=TRUE), col="tan")
if (d == 0) {
abline(h = 0.5, v = 0, lty = "dashed")
legend(-4, 1, c("logitlink", "probitlink",
"clogloglink", "foldsqrtlink"), lwd = 2,
col = c("green", "blue", "red", "tan"))
}
}
par(lwd = 1)
## End(Not run)
# This is lucky to converge
fit.h <- vglm(agaaus ~ sm.bs(altitude),
binomialff(foldsqrtlink(mux = 5)),
hunua, trace = TRUE)
## Not run:
plotvgam(fit.h, se = TRUE, lcol = "orange", scol = "orange",
main = "Orange is Hunua, Blue is Waitakere")
## End(Not run)
head(predict(fit.h, hunua, type = "response"))
## Not run:
# The following fails.
pneumo <- transform(pneumo, let = log(exposure.time))
fit <- vglm(cbind(normal, mild, severe) ~ let,
cumulative(foldsqrtlink(mux = 10), par = TRUE, rev = TRUE),
data = pneumo, trace = TRUE, maxit = 200)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.