Nothing
# --------------------------------------------------------------
monfn <- function(argvals, Wfdobj, basislist=vector("list",JMAX),
returnMatrix=FALSE) {
# evaluates a monotone function of the form
# h(x) = [D^{-1} exp Wfdobj](x)
# where D^{-1} means taking the indefinite integral.
# The interval over which the integration takes places is defined in
# the basis object in Wfdobj.
# Arguments:
# ARGVALS ... argument values at which function and derivatives are evaluated
# WFDOBJ ... a functional data object
# BASISLIST ... a list containing values of basis functions
# Returns:
# HVAL ... matrix or array containing values of h.
# RETURNMATRIX ... If False, a matrix in sparse storage model can be returned
# from a call to function BsplineS. See this function for
# enabling this option.
# Last modified 8 May 2012
# check Wfdobj
if (!inherits(Wfdobj, "fd")) stop("Wfdobj is not a fd object.")
JMAX <- 15
JMIN <- 11
EPS <- 1E-5
coef <- Wfdobj$coefs
coefd <- dim(coef)
ndim <- length(coefd)
if (ndim > 1 && coefd[2] != 1) stop("WFDOBJ is not a single function")
basisobj <- Wfdobj$basis
rangeval <- basisobj$rangeval
# set up first iteration
width <- rangeval[2] - rangeval[1]
JMAXP <- JMAX + 1
h <- rep(1,JMAXP)
h[2] <- 0.25
# matrix SMAT contains the history of discrete approximations to the
# integral
smat <- matrix(0,JMAXP)
# array TVAL contains the argument values used in the approximation
# array FVAL contains the integral values at these argument values,
# rows corresponding to argument values
# the first iteration uses just the endpoints
tval <- rangeval
j <- 1
if (is.null(basislist[[j]])) {
bmat <- getbasismatrix(tval, basisobj, 0, returnMatrix)
basislist[[j]] <- bmat
} else {
bmat <- basislist[[j]]
}
fx <- as.matrix(exp(bmat %*% coef))
fval <- fx
smat[1,] <- width*apply(fx,2,sum)/2
tnm <- 0.5
for (j in 2:JMAX) {
tnm <- tnm*2
del <- width/tnm
flag <- ifelse(rangeval[1]+del/2 >= rangeval[2]-del/2, -1, 1)
tj <- seq(rangeval[1]+del/2, rangeval[2]-del/2, by=flag*abs(del))
tval <- c(tval, tj)
if (is.null(basislist[[j]])) {
bmat <- getbasismatrix(tj, basisobj, 0, returnMatrix)
basislist[[j]] <- bmat
} else {
bmat <- basislist[[j]]
}
fx <- as.matrix(exp(bmat %*% coef))
fval <- c(fval,fx)
smat[j] <- (smat[j-1] + width*apply(fx,2,sum)/tnm)/2
if (j >= JMIN) {
ind <- (j-4):j
result <- polintmat(h[ind],smat[ind],0)
ss <- result[[1]]
dss <- result[[2]]
if (all(abs(dss) < EPS*max(abs(ss)))) {
# successful convergence
# sort argument values and corresponding function values
ordind <- order(tval)
tval <- tval[ordind]
fval <- fval[ordind]
nx <- length(tval)
del <- tval[2] - tval[1]
fval <- del*(cumsum(fval) - 0.5*(fval[1] + fval))
hval <- approx(tval, fval, argvals)$y
return(hval)
}
}
smat[j+1] <- smat[j]
h[j+1] <- 0.25*h[j]
}
stop(paste("No convergence after",JMAX," steps in MONFN"))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.