R/masize.R

Defines functions masize getb0 getb1star getPTE antilogit

Documented in masize

antilogit <- function(x) 1/(1+exp(-x))

getPTE <- function(b1, b2, rho, sdx1=1, sdx2=1) b2*sdx2*rho/((b1+b2*sdx2*rho/sdx1)*sdx1)

getb1star <- function(b1, b2, rho, sdx1=1, sdx2=1) b1+b2*sdx2*rho/sdx1

getb0 <- function(p, X, b1, b2)
{
      b0 <- 1
      p.test <- 0.9999
      while(p.test>p) {
            b0 <- b0-0.1
            p.test <- mean(antilogit(X%*%as.matrix(c(b0, b1, b2))))
        }
      while(p.test<p) {
            b0 <- b0+0.01
            p.test <- mean(antilogit(X%*%as.matrix(c(b0, b1, b2))))
        }
      while(p.test>p) {
            b0 <- b0-0.001
            p.test <- mean(antilogit(X%*%as.matrix(c(b0, b1, b2))))
        }
      while(p.test<p) {
            b0 <- b0+0.0001
            p.test <- mean(antilogit(X%*%as.matrix(c(b0, b1, b2))))
        }
      b0
}

#' Sample size calculation for mediation analysis
#'
#' The function computes sample size for regression problems where the goal is to assess mediation of the effects of a 
#' primary predictor by an intermediate variable or mediator.
#'
#' Mediation has been thought of in terms of the proportion of effect explained, or the relative attenuation of b1, the 
#' coefficient for the primary predictor X1, when the mediator, X2, is added to the model. The goal is to show that b1*, 
#' the coefficient for X1 in the reduced model (i.e., the model with only X1, differs from b1, its coefficient in the full 
#' model (i.e., the model with both X1 and the mediator X2. If X1 and X2 are correlated, then showing that b2, the 
#' coefficient for X2, differs from zero is equivalent to showing b1* differs from b1. Thus the problem reduces to 
#' detecting an effect of X2, controlling for X1. In short, it amounts to the more familiar problem of inflating sample 
#' size to account for loss of precision due to adjustment for X1.
#'
#' The approach here is to approximate the expected information matrix from the regression model including both X1 and X2, 
#' to obtain the expected standard error of the estimate of b2, evaluated at the MLE. The sample size follows from 
#' comparing the Wald test statistic (i.e., the ratio of the estimate of b2 to its SE) to the standard normal distribution, 
#' with the expected value of the numerator and denominator of the statistic computed under the alternative hypothesis. 
#' This reflects the Wald test for the statistical significance of a coefficient implemented in most regression packages.
#'
#' The function provides methods to calculate sample sizes for the mediation problem for linear, logistic, Poisson, and Cox 
#' regression models in four cases for each model:
#'
#' \tabular{ll}{
#'     CpCm \tab continuous primary predictor, continuous mediator\cr
#'     BpCm \tab binary primary predictor, continuous mediator\cr
#'     CpBm \tab continuous primary predictor, binary mediator\cr
#'     BpBm \tab binary primary predictor, binary mediator
#' }
#'
#' The function is also generally applicable to the analogous problem of calculating sample size adequate to detect the 
#' effect of a primary predictor in the presence of confounding. Simply treat X2 as the primary predictor and consider X1 
#' the confounder.
#'
#' @param model "lineari", "logisticj", "poissonk", "coxl", where i,j,k,l range from 1 to 4,5,9,9, respectively.
#' @param opts A list specific to the model
#'   \tabular{ll}{
#'    b1 \tab regression coefficient for the primary predictor X1\cr
#'    b2 \tab regression coefficient for the mediator X2\cr
#'    rho \tab correlation between X1 and X2\cr
#'    sdx1, sdx2 \tab standard deviations (SDs) of X1 and X2\cr
#'    f1, f2 \tab prevalence of binary X1 and X2\cr
#'    sdy \tab residual SD of the outcome for the linear model\cr
#'    p \tab marginal prevalence of the binary outcome in the logistic model\cr
#'    m \tab marginal mean of the count outcome in a Poisson model\cr
#'    f \tab proportion of uncensored observations for the Cox model\cr
#'    fc \tab proportion of observations censored early\cr
#'    alpha \tab one-sided type-I error rate\cr
#'    gamma \tab type-II error rate\cr
#'    ns \tab number of observations to be simulated\cr
#'    seed \tab random number seed
#'    }
#'
#' For linear model, the arguments are b2, rho, sdx2, sdy, alpha, and gamma. For cases CpBm and BpBm, set sdx2 = 
#' \eqn{\sqrt{f2(1-f2)}}{sqrt(f2*(1-f2))}. Three alternative functions are included for the linear model. These functions 
#' make it possible to supply other combinations of input parameters affecting mediation:
#'
#' \tabular{ll}{
#'     b1* \tab coefficient for the primary predictor \cr
#'         \tab in the reduced model excluding the mediator (b1star)\cr
#'     b1  \tab coefficient for the primary predictor \cr
#'         \tab in the full model including the mediator \cr
#'     PTE \tab proportion of the effect of the primary predictor \cr
#'         \tab explained by the mediator, defined as (b1*-b1)/b1*\cr
#' }
#'
#' These alternative functions for the linear model require specification of an extra parameter, but are provided for
#' convenience, along with two utility files for computing PTE and b1* from the other parameters. The required arguments
#' are explained in comments within the R code.
#' @param alpha Type-I error rate, one-sided.
#' @param gamma Type-II error rate.
#'
#' @details
#' For linear model, a single function, linear, implements the analytic solution for all four cases, based on Hsieh et al., 
#' is to inflate sample size by a variance inflation factor, \eqn{1/(1-rho^2)}, where rho is the correlation of X1 and X2. 
#' This also turns out to be the analytic solution in cases CpCm and BpCm for the Poisson model, and underlies approximate 
#' solutions for the logistic and Cox models. An analytic solution is also given for cases CpBm and BpBm for the Poisson 
#' model. Since analytic solutions are not available for the logistic and Cox models, a simulation approach is used to 
#' obtain the expected information matrix instead.
#'
#' For logistic model, the approximate solution due to Hsieh is implemented in the function logistic.approx, and can be 
#' used for all four cases. Arguments are p, b2, rho, sdx2, alpha, and gamma. For a binary mediator with prevalence f2, 
#' sdx2 should be reset to \eqn{\sqrt{f2(1-f2)}}{sqrt(f2*(1-f2))}. Simulating the information matrix of the logistic model 
#' provides somewhat more accurate sample size estimates than the Hsieh approximation. The functions for cases CpCm, BpCm, 
#' CpBm, and BpBm are respectively logistic.ccs, logistic.bcs, logistic.cbs, and logistic.bbs, as for the Poisson and Cox 
#' models. Arguments for these functions include p, b1, sdx1 or f1, b2, sdx2 or f2, rho, alpha, gamma, and ns. As in other 
#' functions, sdx1, sdx2, alpha, and gamma are set to the defaults listed above. These four functions call two utility 
#' functions, getb0 (to calculate the intercept parameter from the others) and antilogit, which are supplied.
#'
#' For Poisson model, The function implementing the approximate solution based on the variance inflation factor is 
#' poisson.approx, and can be used for all four cases. Arguments are EY (the marginal mean of the Poisson outcome), b2, 
#' sdx2, rho, alpha and gamma, with sdx2, alpha and gamma set to the usual defaults; use 
#' sdx2=\eqn{\sqrt{f2(1-f2)}}{sqrt(f2*(1-f2))} for a binary mediator with prevalence f2 (cases CpBm and BpBm). For cases 
#' CpCm and BpCm (continuous mediators), the approximate formula is also the analytic solution. For these cases, we supply 
#' redundant functions poisson.cc and poisson.bc, with the same arguments and defaults as for poisson.approx (it's the same 
#' function). For the two cases with binary mediators, the functions are poisson.cb and poisson.bb. In addition to m, b2, 
#' f2, rho, alpha, and gamma, b1 and sdx1 or f1 must be specified. Defaults are as usual. Functions using simulation for 
#' the Poisson model are available: poisson.ccs, poisson.bcs, poisson.cbs, and poisson.bbs. As in the logistic case, these 
#' require arguments b1 and sdx1 or f1. For this case, however, the analytic functions are faster, avoid simulation error, 
#' and should be used. We include these functions as templates that could be adapted to other joint predictor 
#' distributions.

#' For Cox model, the function implementing the approximate solution, using the variance inflation factor and derived by 
#' Schmoor et al., is cox.approx, and can be used for all four cases. Arguments are b2, sdx2, rho, alpha, gamma, and f. For 
#' binary X2 set sdx2 = \eqn{\sqrt{f2(1-f2)}}{sqrt(f2*(1-f2))}. The approximation works very well for cases CpCm and BpCm 
#' (continuous mediators), but is a bit less accurate for cases CpBm and BpBm (binary mediators). We get some improvement 
#' for those cases using the simulation approach. This approach is implemented for all four, as functions cox.ccs, cox.bcs, 
#' cox.cbs, and cox.bbs. Arguments are b1, sdx1 or f1, b2, sdx2 or f2, rho, alpha, gamma, f, and ns, with defaults as 
#' described above. Slight variants of these functions, cox.ccs2, cox.bcs2, cox.cbs2, and cox.bbs2, make it possible to 
#' allow for early censoring of a fraction fc of observations; but in our experience this has virtually no effect, even 
#' with values of fc of 0.5. The default for fc is 0.
#'
#' A summary of the argumentss is as follows, noting that additional parameter seed can be supplied for simulation-based 
#' method.
#'
#' \tabular{lll}{
#' model \tab arguments \tab description\cr
#' \cr
#' linear1 \tab b2, rho, sdx2, sdy \tab linear \cr
#' linear2 \tab b1star, PTE, rho, sdx1, sdy \tab lineara\cr
#' linear3 \tab b1star, b2, PTE, sdx1, sdx2, sdy \tab linearb\cr
#' linear4 \tab b1star, b1, b2, sdx1, sdx2, sdy \tab linearc\cr
#' \cr
#' logistic1 \tab p, b2, rho, sdx2 \tab logistic.approx\cr
#' logistic2 \tab p, b1, b2, rho, sdx1, sdx2, ns \tab logistic.ccs\cr
#' logistic3 \tab p, b1, f1, b2, rho, sdx2, ns \tab logistic.bcs\cr
#' logistic4 \tab p, b1, b2, f2, rho, sdx1, ns \tab logistic.cbs\cr
#' logistic5 \tab p, b1, f1, b2, f2, rho, ns \tab logistic.bbs\cr
#' \cr
#' poisson1 \tab m, b2, rho, sdx2 \tab poisson.approx\cr
#' poisson2 \tab m, b2, rho, sdx2 \tab poisson.cc\cr
#' poisson3 \tab m, b2, rho, sdx2 \tab poisson.bc\cr
#' poisson4 \tab m, b1, b2, f2, rho, sdx1 \tab poisson.cb\cr
#' poisson5 \tab m, b1, f1, b2, f2, rho \tab poisson.bb\cr
#' poisson6 \tab m, b1, b2, rho, sdx1, sdx2, ns \tab poisson.ccs\cr
#' poisson7 \tab m, b1, f1, b2, rho, sdx2, ns \tab poisson.bcs\cr
#' poisson8 \tab m, b1, b2, f2, rho, sdx1, ns \tab poisson.cbs\cr
#' poisson9 \tab m, b1, f1, b2, f2, rho, ns\tab poisson.bbs\cr
#' \cr
#' cox1 \tab b2, rho, f, sdx2 \tab cox.approx\cr
#' cox2 \tab b1, b2, rho, f, sdx1, sdx2, ns \tab cox.ccs\cr
#' cox3 \tab b1, f1, b2, rho, f, sdx2, ns\tab cox.bcs\cr
#' cox4 \tab b1, b2, f2, rho, f, sdx1, ns\tab cox.cbs\cr
#' cox5 \tab b1, f1, b2, f2, rho, f, ns\tab cox.bbs\cr
#' cox6 \tab b1, b2, rho, f, fc, sdx1, sdx2, ns\tab cox.ccs2\cr
#' cox7 \tab b1, f1, b2, rho, f, fc, sdx2, ns\tab cox.bcs2\cr
#' cox8 \tab b1, b2, f2, rho, f, fc, sdx1, ns\tab cox.cbs2\cr
#' cox9 \tab b1, f1, b2, f2, rho, f, fc, ns\tab cox.bbs2\cr
#' }
#'
#' @export
#' @return A short description of model (desc, b=binary, c=continuous, s=simulation) and sample size (n). In the case of Cox model, 
#' number of events (d) is also indicated.
#'
#' @references
#' \insertRef{hsieh98}{gap}
#'
#' \insertRef{schmoor00}{gap}
#'
#' \insertRef{vittinghoff09}{gap}
#'
#' @seealso [`ab`]
#'
#' @examples
#' \dontrun{
#' ## linear model
#' # CpCm
#' opts <- list(b2=0.5, rho=0.3, sdx2=1, sdy=1)
#' masize("linear1",opts)
#' # BpBm
#' opts <- list(b2=0.75, rho=0.3, f2=0.25, sdx2=sqrt(0.25*0.75), sdy=3)
#' masize("linear1",opts,gamma=0.1)
#'
#' ## logistic model
#' # CpBm
#' opts <- list(p=0.25, b2=log(0.5), rho=0.5, sdx2=0.5)
#' masize("logistic1",opts)
#' opts <- list(p=0.25, b1=log(1.5), sdx1=1, b2=log(0.5), f2=0.5, rho=0.5, ns=10000,
#'              seed=1234)
#' masize("logistic4",opts)
#' opts <- list(p=0.25, b1=log(1.5), sdx1=1, b2=log(0.5), f2=0.5, rho=0.5, ns=10000,
#'              seed=1234)
#' masize("logistic4",opts)
#' opts <- list(p=0.25, b1=log(1.5), sdx1=4.5, b2=log(0.5), f2=0.5, rho=0.5, ns=50000,
#'              seed=1234)
#' masize("logistic4",opts)
#'
#' ## Poisson model
#' # BpBm
#' opts <- list(m=0.5, b2=log(1.25), rho=0.3, sdx2=sqrt(0.25*0.75))
#' masize("poisson1",opts)
#' opts <- list(m=0.5, b1=log(1.4), f1=0.25, b2=log(1.25), f2=0.25, rho=0.3)
#' masize("poisson5",opts)
#' opts <- c(opts,ns=10000, seed=1234)
#' masize("poisson9",opts)
#'
#' ## Cox model
#' # BpBm
#' opts <- list(b2=log(1.5), rho=0.45, f=0.2, sdx2=sqrt(0.25*0.75))
#' masize("cox1",opts)
#' opts <- list(b1=log(2), f1=0.5, b2=log(1.5), f2=0.25, rho=0.45, f=0.2, seed=1234)
#' masize("cox5",c(opts, ns=10000))
#' masize("cox5",c(opts, ns=50000))
#' }
#'
#' @keywords misc

masize <- function(model,opts, alpha=0.025, gamma=0.2)
{
   for(p in c("survival")) {
      if (length(grep(paste("^package:", p, "$", sep=""), search())) == 0) {
         if (!requireNamespace(p, quietly = TRUE))
         warning(paste("masize needs package `", p, "' to be fully functional; please install", sep=""))
      }
   }
   linear <- paste("linear",1:4,sep="")
   logistic <- paste("logistic",1:5,sep="")
   poisson <- paste("poisson",1:9,sep="")
   cox <- paste("cox",1:9,sep="")
   model.int <- charmatch(model, c(linear,logistic,poisson,cox))
   if (is.na(model.int)) stop("Invalid model type")
   if (model.int == 0) stop("Ambiguous model type")
   if (!is.null(opts$seed)) set.seed(opts$seed)
   ## linear models
   if (model.int == 1) # (2) linear
   {
       b2 <- opts$b2       # regression coefficient for mediator in full model
       rho <- opts$rho     # correlation of primary predictor and mediator
       sdx2 <- opts$sdx2   # SD of mediator; use sqrt(f2*(1-f2)) for binary mediator with prevalence f2
       sdy <- opts$sdy     # SD of outcome
       desc <- "linear"
       n <- (qnorm(alpha)+qnorm(gamma))^2*sdy^2/((b2*sdx2)^2*(1-rho^2))
   }
   if (model.int == 2) # (4) lineara
   {
        b1star <- opts$b1star # regression coefficient for primary predictor in reduced model
        PTE <- opts$PTE       # proportion of effect of primary predictor explained by mediator: (b1star - b1)/b1star
        rho <- opts$rho       # correlation of primary predictor and mediator
        sdx1 <- opts$sdx1     # SD of primary predictor; use sqrt(f1*(1-f1)) for binary predictor with prevalence f
        sdy <- opts$sdy       # SD of outcome
        desc <- "lineara"
        n <- (qnorm(alpha)+qnorm(gamma))^2*rho^2*sdy^2/((b1star*sdx1*PTE)^2*(1-rho^2))
   }
   if (model.int == 3) # (5) linearb
   {
        b1star <- opts$b1star # regression coefficient for primary predictor in reduced model
        b2 <- opts$b2         # regression coefficient for mediator in full model
        PTE <- opts$PTE       # proportion of effect of primary predictor explained by mediator: (b1star - b1)/b1star
        sdx1 <- opts$sdx1     # SD of primary predictor; use sqrt(f1*(1-f1)) for binary predictor with prevalence f1
        sdx2 <- opts$sdx2     # SD of mediator; use sqrt(f2*(1-f2)) for binary mediator with prevalence f2
        sdy <- opts$sdy       # SD of outcome
        desc <- "linearb"
        n <- (qnorm(alpha)+qnorm(gamma))^2*sdy^2/((b2*sdx2)^2-(b1star*sdx1*PTE)^2)
   }
   if (model.int == 4) # (6) linearc
   {
        b1star <- opts$b1star # regression coefficient for primary predictor in reduced model
        b1 <- opts$b1         # regression coefficient for primary predictor in full model
        b2 <- opts$b2         # regression coefficient for mediator in full model
        sdx1 <- opts$sdx1     # SD of primary predictor; use sqrt(f1*(1-f1)) for binary predictor with prevalence f1
        sdx2 <- opts$sdx2     # SD of mediator; use sqrt(f2*(1-f2)) for binary mediator with prevalence f2
        sdy <- opts$sdy       # SD of outcome
        desc <- "linearc"
        n <- (qnorm(alpha)+qnorm(gamma))^2*sdy^2/((b2*sdx2)^2-((b1star-b1)*sdx1)^2)
   }
   ## logistic model
   if (model.int == 5) # (7) logistic.approx
   {
        p <- opts$p           # marginal prevalence of outcome
        b2 <- opts$b2         # regression coefficient (log odds-ratio) for mediator
        rho <- opts$rho       # correlation of primary predictor and mediator
        sdx2 <- opts$sdx2     # SD of mediator; use sqrt(f2*(1-f2)) for binary mediator with prevalence f2
        desc <- "logistic.approx"
        n <- (qnorm(alpha)+qnorm(gamma))^2/((b2*sdx2)^2*(1-rho^2)*p*(1-p))
   }
   if (model.int == 6) # (8) logistic.ccs
   {
        p <- opts$p           # marginal prevalence of outcome
        b1 <- opts$b1         # regression coefficient (log odds-ratio) for primary predictor
        b2 <- opts$b2         # regression coefficient (log odds-ratio) for mediator
        rho <- opts$rho       # correlation of primary predictor and mediator
        sdx1 <- opts$sdx1     # SD of primary predictor
        sdx2 <- opts$sdx2     # SD of mediator
        ns <- opts$ns         # number of observations in simulated dataset
        S <- matrix(c(sdx1^2, rho*sdx1*sdx2, rho*sdx1*sdx2, sdx2^2), 2, 2)
        X <- cbind(rep(1, ns), matrix(rnorm(2*ns), ns, 2) %*% chol(S))
        b0 <- getb0(p, X, b1, b2)
        pi <- antilogit(X%*%as.matrix(c(b0, b1, b2)))
        XVX <- crossprod(X*as.vector(sqrt(pi*(1-pi))))
        desc <- "logistic.ccs"
        n <- (qnorm(alpha)+qnorm(gamma))^2*solve(XVX/ns)[3,3]/(b2^2)
   }
   if (model.int == 7) # (8) logistic.bcs
   {
        p <- opts$p                      # marginal prevalence of outcome
        b1 <- opts$b1                    # regression coefficient (log odds-ratio) for primary predictor
        f1 <- opts$f1                    # prevalence of binary primary predictor
        b2 <- opts$b2                    # regression coefficient (log odds-ratio) for mediator
        rho <- opts$rho                  # correlation of primary predictor and mediator
        sdx2 <- opts$sdx2                # SD of mediator
        ns <- opts$ns                    # number of observations in simulated dataset
        mu0 <- -rho*sdx2*sqrt(f1/(1-f1)) # conditional mean of mediator when X1=0
        mu1 <- rho*sdx2*sqrt((1-f1)/f1)  # conditional mean of mediator when X1=1
        sdx2.1 <- sdx2*sqrt(1-rho^2)     # SD of mediator within levels of X1
        n0 <- round(ns*(1-f1))           # number of simulated observations with X1=0
        n1 <- ns-n0                      # number of simulated observations with X1=1
        X <- rbind(cbind(rep(1, n0), rep(0, n0), rnorm(n0, mean=mu0, sd=sdx2.1)),
                   cbind(rep(1, n1), rep(1, n1), rnorm(n1, mean=mu1, sd=sdx2.1)))
        b0 <- getb0(p, X, b1, b2)
        pi <- antilogit(X%*%as.matrix(c(b0, b1, b2)))
        XVX <- crossprod(X*as.vector(sqrt(pi*(1-pi))))
        desc <- "logistic.bcs"
        n <- (qnorm(alpha)+qnorm(gamma))^2*solve(XVX/ns)[3,3]/b2^2
   }
   if (model.int == 8) # (8) logistic.cbs
   {
        p <- opts$p                     # marginal prevalence of outcome
        b1 <- opts$b1                   # regression coefficient (log odds-ratio) for continuous primary predictor
        b2 <- opts$b2                   # regression coefficient (log odds-ratio) for binary mediator
        f2 <- opts$f2                   # prevalence of binary mediator
        rho <- opts$rho                 # correlation of primary predictor and mediator
        sdx1 <- opts$sdx1               # SD of continuous primary predictor
        ns <- opts$ns                   # number of observations in simulated dataset
        mu0 <- -rho*sdx1*sqrt(f2/(1-f2))
        mu1 <- rho*sdx1*sqrt((1-f2)/f2)
        sdx1.2 <- sdx1*sqrt(1-rho^2)
        n0 <- round(ns*(1-f2))
        n1 <- ns-n0
        X <- rbind(cbind(rep(1, n0), rnorm(n0, mean=mu0, sd=sdx1.2), rep(0, n0)),
                   cbind(rep(1, n1), rnorm(n1, mean=mu1, sd=sdx1.2), rep(1, n1)))
        b0 <- getb0(p, X, b1, b2)
        pi <- antilogit(X%*%as.matrix(c(b0, b1, b2)))
        XVX <- crossprod(X*as.vector(sqrt(pi*(1-pi))))
        desc <- "logistic.cbs"
        n <- (qnorm(alpha)+qnorm(gamma))^2*solve(XVX/ns)[3,3]/b2^2
   }
   if (model.int == 9) # (8) logistic.bbs
   {
        p <- opts$p                     # marginal prevalence of outcome
        b1 <- opts$b1                   # regression coefficient (log odds-ratio) for binary primary predictor
        f1 <- opts$f1                   # prevalence of primary predictor
        b2 <- opts$b2                   # regression coefficient (log odds-ratio) for binary mediator
        f2 <- opts$f2                   # prevalence of mediator
        rho <- opts$rho                 # correlation of primary predictor and mediator
        ns <- opts$ns                   # number of observations in simulated dataset
        f11 <- rho*sqrt(f1*(1-f1)*f2*(1-f2))+f1*f2 # fraction with X1=1 and X2=1
        f10 <- f1-f11                   # fraction with X1=1 and X2=0
        f01 <- f2-f11                   # fraction with X1=0 and X2=1
        n11 <- round(ns*f11)
        n10 <- round(ns*f10)
        n01 <- round(ns*f01)
        n00 <- max(1, ns-n10-n01-n11)
        X <- rbind(cbind(rep(1, n00), rep(0, n00), rep(0, n00)),
                   cbind(rep(1, n10), rep(1, n10), rep(0, n10)),
                   cbind(rep(1, n01), rep(0, n01), rep(1, n01)),
                   cbind(rep(1, n11), rep(1, n11), rep(1, n11)))
        b0 <- getb0(p, X, b1, b2)
        pi <- antilogit(X%*%as.matrix(c(b0, b1, b2)))
        XVX <- crossprod(X*as.vector(sqrt(pi*(1-pi))))
        desc <- "logistic.bbs"
        n <- (qnorm(alpha)+qnorm(gamma))^2*solve(XVX/ns)[3,3]/b2^2
   }
   ## Poisson model
   if (model.int == 10) # (9) poisson.approx
   {
        m <- opts$m                     # marginal mean of outcome
        b2 <- opts$b2                   # regression coefficient (log rate-ratio) for mediator
        rho <- opts$rho                 # correlation of primary predictor and mediator
        sdx2 <- opts$sdx2               # SD of mediator, use sqrt(f2*(1-f2)) for binary mediator with prevalence f2
        desc <- "poisson.approx"
        n <- (qnorm(alpha)+qnorm(gamma))^2/((b2*sdx2)^2*(1-rho^2)*m)
   }
   if (model.int == 11) # (9) poisson.cc
   {
        m <- opts$m                     # marginal mean of outcome
        b2 <- opts$b2                   # regression coefficient (log rate-ratio) for mediator
        rho <- opts$rho                 # correlation of primary predictor and mediator
        sdx2 <- opts$sdx2               # SD of mediator, use sqrt(f2*(1-f2)) for binary mediator with prevalence f2
        desc <- "poisson.cc"
        n <- (qnorm(alpha)+qnorm(gamma))^2/((b2*sdx2)^2*(1-rho^2)*m)
   }
   if (model.int == 12) # (9) poisson.bc
   {
        m <- opts$m                     # marginal mean of outcome
        b2 <- opts$b2                   # regression coefficient (log rate-ratio) for mediator
        rho <- opts$rho                 # correlation of primary predictor and mediator
        sdx2 <- opts$sdx2               # SD of mediator, use sqrt(f2*(1-f2)) for binary mediator with prevalence f2
        desc <- "poisson.bc"
        n <- (qnorm(alpha)+qnorm(gamma))^2/((b2*sdx2)^2*(1-rho^2)*m)
   }
   if (model.int == 13) # (10) poisson.cb
   {
        m <- opts$m                      # marginal mean of outcome
        b1 <- opts$b1                    # regression coefficient (log rate-ratio) for continuous primary predictor
        b2 <- opts$b2                    # regression coefficient (log rate-ratio) for binary mediator
        f2 <- opts$f2                    # prevalence of binary mediator
        rho <- opts$rho                  # correlation of primary predictor and mediator
        sdx1 <- opts$sdx1                # SD of continuous primary predictor
        mu0 <- -rho*sdx1*sqrt(f2/(1-f2)) # mean of X1 when X2 = 0
        mu1 <- rho*sdx1*sqrt((1-f2)/f2)  # mean of X1 when X2 = 1
        sdx1.2 <- sdx1*sqrt(1-rho^2)
        B <- f2*exp(b1*mu1+b2)
        D <- (1-f2)*exp(b1*mu0)
        desc <- "poisson.cb"
        n <- (qnorm(alpha)+qnorm(gamma))^2*(((B+D)*sdx1.2)^2+B*D*(mu1-mu0)^2)/(b2^2*B*D*sdx1.2^2*m)
   }
   if (model.int == 14) # (11) poisson.bb
   {
        m <- opts$m                     # marginal mean of outcome
        b1 <- opts$b1                   # regression coefficient (log rate-ratio) for binary primary predictor
        f1 <- opts$f1                   # prevalence of primary predictor
        b2 <- opts$b2                   # regression coefficient (log rate-ratio) for binary mediator
        f2 <- opts$f2                   # prevalence of binary mediator
        rho <- opts$rho                 # correlation of primary predictor and mediator
        f11 <- f1*f2+rho*sqrt(f1*(1-f1)*f2*(1-f2))
        f10 <- f1-f11
        f01 <- f2-f11
        f00 <- 1-f01-f10-f11
        B <- f00
        C <- f10*exp(b1)
        D <- f01*exp(b2)
        E <- f11*exp(b1+b2)
        desc <- "poisson.bb"
        n <- (qnorm(alpha)+qnorm(gamma))^2*(B+C+D+E)*(B+D)*(C+E)/(b2^2*(B*C*D+B*C*E+B*D*E+C*D*E)*m)
   }
   if (model.int == 15) # (12) poisson.ccs
   {
        m <- opts$m     # marginal mean of outcome
        b1 <- opts$b1   # regression coefficient (log rate-ratio) for continuous primary predictor
        b2 <- opts$b2   # regression coefficient (log rate-ratio) for continuous mediator
        rho <- opts$rho # correlation of primary predictor and mediator
        sdx1 <- opts$adx1 # SD of primary predictor
        sdx2 <- opts$sdx2 # SD of mediator
        ns <- opts$ns     # number of observations in simulated dataset
        S <- matrix(c(sdx1^2, rho*sdx1*sdx2, rho*sdx1*sdx2, sdx2^2), 2, 2)
        X <- matrix(rnorm(2*ns), ns, 2) %*% chol(S)
        rr <- exp(X%*%matrix(c(b1, b2)))
        XVX <- crossprod(cbind(rep(1, ns), X)*as.vector(sqrt(m*rr/mean(rr))))
        desc <- "poisson.ccs"
        n <- (qnorm(alpha)+qnorm(gamma))^2*solve(XVX/ns)[3,3]/(b2^2)
   }
   if (model.int == 16) # (12) poisson.bcs
   {
        m <- opts$m                     # marginal mean of outcome
        b1 <- opts$b1                   # regression coefficient (log rate-ratio) for continuous primary predictor
        f1 <- opts$f1                   # prevalence of primary predictor
        b2 <- opts$b2                   # regression coefficient (log rate-ratio) for continuous mediator
        rho <- opts$rho                 # correlation of primary predictor and mediator
        sdx2 <- opts$sdx2               # SD of mediator
        ns <- opts$ns                   # number of observations in simulated dataset
        n1 <- round(ns*f1)
        n0 <- ns-n1
        mu0 <- -rho*sdx2*sqrt(f1/(1-f1)) # mean of X2 when X1 = 0
        mu1 <- rho*sdx2*sqrt((1-f1)/f1) # mean of X2 when X1 = 1
        sdx2.1 <- sdx2*sqrt(1-rho^2)
        X <- rbind(cbind(rep(0, n0), rnorm(n0, mean=mu0, sd=sdx2.1)),
                   cbind(rep(1, n1), rnorm(n1, mean=mu1, sd=sdx2.1)))
        rr <- exp(X%*%matrix(c(b1, b2)))
        XVX <- crossprod(cbind(rep(1, ns), X)*as.vector(sqrt(m*rr/mean(rr))))
        desc <- "poisson.bcs"
        n <- (qnorm(alpha)+qnorm(gamma))^2*solve(XVX/ns)[3,3]/(b2^2)
   }
   if (model.int == 17) # (12) poisson.cbs
   {
        m <- opts$m                      # marginal mean of outcome
        b1 <- opts$b1                    # regression coefficient (log rate-ratio) for continuous primary predictor
        b2 <- opts$b2                    # regression coefficient (log rate-ratio) for continuous mediator
        f2 <- opts$f2                    # prevalence of mediator
        rho <- opts$rho                  # correlation of primary predictor and mediator
        sdx1 <- opts$sdc1                # SD of primary predictor
        ns <- opts$ns                    # number of observations in simulated dataset
        n1 <- round(ns*f2)
        n0 <- ns-n1
        mu0 <- -rho*sdx1*sqrt(f2/(1-f2)) # mean of X1 when X2 = 0
        mu1 <- rho*sdx1*sqrt((1-f2)/f2)  # mean of X1 when X2 = 1
        sdx1.2 = sdx1*sqrt(1-rho^2)
        X <-  rbind(cbind(rnorm(n0, mean=mu0, sd=sdx1.2), rep(0, n0)),
                    cbind(rnorm(n1, mean=mu1, sd=sdx1.2), rep(1, n1)))
        rr <- exp(X%*%matrix(c(b1, b2)))
        XVX <- crossprod(cbind(rep(1, ns), X)*as.vector(sqrt(m*rr/mean(rr))))
        desc <- "poisson.cbs"
        n <- (qnorm(alpha)+qnorm(gamma))^2*solve(XVX/ns)[3,3]/(b2^2)
   }
   if (model.int == 18) # (12) poisson.bbs
   {
        m <- opts$m                      # marginal mean of outcome
        b1 <- opts$b1                    # regression coefficient (log rate-ratio) for primary predictor
        f1 <- opts$f1                    # prevalence of primary predictor
        b2 <- opts$b2                    # regression coefficient (log rate-ratio) for mediator
        f2 <- opts$f2                    # prevalence of mediator
        rho <- opts$rho                  # correlation of primary predictor and mediator
        ns <- opts$ns                    # number of observations in simulated dataset
        f11 <- rho*sqrt(f1*(1-f1)*f2*(1-f2))+f1*f2
        f10 <- f1-f11
        f01 <- f2-f11
        f00 <- 1-f01-f10-f11
        n11 <- round(f11*ns)
        n01 <- round(f01*ns)
        n10 <- round(f10*ns)
        n00 <- ns-n01-n10-n11
        X <- rbind(cbind(rep(0, n00), rep(0, n00)),
                   cbind(rep(1, n10), rep(0, n10)),
                   cbind(rep(0, n01), rep(1, n01)),
                   cbind(rep(1, n11), rep(1, n11)))
        rr <- exp(X%*%matrix(c(b1, b2)))
        XVX <- crossprod(cbind(rep(1, ns), X)*as.vector(sqrt(m*rr/mean(rr))))
        desc <- "poisson.bbs"
        n <- (qnorm(alpha)+qnorm(gamma))^2*solve(XVX/ns)[3,3]/(b2^2)
   }
   if (model.int == 19) # (13) cox.approx
   {
        b2 <- opts$b2     # regression coefficient (log hazard ratio) for mediator
        rho <- opts$rho   # correlation of primary predictor and mediator
        f <- opts$f       # fraction of follow-up times that are uncensored
        sdx2 <- opts$sdx2 # SD of mediator; use sqrt(f2*(1-f2)) for binary mediator with prevalence f2
        desc <- "cox.approx"
        d <- (qnorm(alpha)+qnorm(gamma))^2/((b2*sdx2)^2*(1-rho^2))
        n <- d/f
   }
   if (model.int == 20) # (14) cox.ccs
   {
        b1 <- opts$b1      # regression coefficient (log hazard ratio) for primary predictor
        b2 <- opts$b2      # regression coefficient (log hazard ratio) for mediator
        rho <- opts$rho    # correlation of primary predictor and mediator
        f <- opts$f        # fraction of follow-up times that are uncensored
        sdx1 <- opts$sdx1  # SD of primary predictor
        sdx2 <- opts$sdx2  # SD of mediator
        ns <- opts$ns      # number of observations in simulated dataset
        S <- matrix(c(sdx1^2, rho*sdx1*sdx2, rho*sdx1*sdx2, sdx2^2), 2, 2)
        X <- matrix(rnorm(2*ns), ns, 2) %*% chol(S)
        time <- rexp(ns, rate = exp(X%*%as.matrix(c(b1, b2))))
        event <- ifelse(rank(time)<=round(ns*f), 1, 0)
        v2a1 <- survival::coxph(Surv(time, event)~X)$var[2, 2]*ns*f
        desc <- "cox.ccs"
        d <- (qnorm(alpha)+qnorm(gamma))^2*v2a1/b2^2
        n <- d/f
   }
   if (model.int == 21) # (14) cox.bcs
   {
        b1 <- opts$b1     # regression coefficient (log hazard ratio) for primary predictor
        f1 <- opts$f1     # prevalence of primary predictor
        b2 <- opts$b2     # regression coefficient (log hazard ratio) for mediator
        rho <- opts$rho   # correlation of primary predictor and mediator
        f <- opts$f       # fraction of follow-up times that are uncensored
        sdx2 <- opts$sdx2 # SD of mediator
        ns <- opts$ns     # number of observations in simulated dataset
        mu0 <- -rho*sdx2*sqrt(f1/(1-f1))
        mu1 <- rho*sdx2*sqrt((1-f1)/f1)
        sdx2.1 <- sdx2*sqrt(1-rho^2)
        n1 <- round(f1*ns)
        n0 <- ns-n1
        X <- rbind(cbind(rep(0, n0), rnorm(n0, mean=mu0, sd=sdx2.1)),
                   cbind(rep(1, n1), rnorm(n1, mean=mu1, sd=sdx2.1)))
        time <- rexp(ns, rate = exp(X%*%as.matrix(c(b1, b2))))
        event <- ifelse(rank(time)<=round(ns*f), 1, 0)
        v2a1 <- survival::coxph(Surv(time, event)~X)$var[2, 2]*ns*f
        desc <- "cox.bcs"
        d <- (qnorm(alpha)+qnorm(gamma))^2*v2a1/b2^2
        n <- d/f
   }
   if (model.int == 22) # (14) cox.cbs
   {
        b1 <- opts$b1     # regression coefficient (log hazard ratio) for primary predictor
        b2 <- opts$b2     # regression coefficient (log hazard ratio) for mediator
        f2 <- opts$f2     # prevalence of mediator
        rho <- opts$rho   # correlation of primary predictor and mediator
        f <- opts$f       # fraction of follow-up times that are uncensored
        sdx1 <- opts$sdx1 # SD of primary predictor
        ns <- opts$ns     # number of observations in simulated dataset
        mu0 <- -rho*sdx1*sqrt(f2/(1-f2))
        mu1 <- rho*sdx1*sqrt((1-f2)/f2)
        sdx1.2 <- sdx1*sqrt(1-rho^2)
        n1 <- round(f2*ns)
        n0 <- ns-n1
        X <- rbind(cbind(rnorm(n0, mean=mu0, sd=sdx1.2), rep(0, n0)),
                   cbind(rnorm(n1, mean=mu1, sd=sdx1.2), rep(1, n1)))
        time <- rexp(ns, rate = exp(X%*%as.matrix(c(b1, b2))))
        event <- ifelse(rank(time)<=round(ns*f), 1, 0)
        v2a1 <- survival::coxph(Surv(time, event)~X)$var[2, 2]*ns*f
        desc <- "cox.cbs"
        d <- (qnorm(alpha)+qnorm(gamma))^2*v2a1/b2^2
        n <- d/f
   }
   if (model.int == 23) # (14) cox.bbs
   {
        b1 <- opts$b1   # regression coefficient (log hazard ratio) for primary predictor
        f1 <- opts$f1   # prevalence of primary predictor
        b2 <- opts$b2   # regression coefficient (log hazard ratio) for mediator
        f2 <- opts$f2   # prevalence of mediator
        rho <- opts$rho # correlation of primary predictor and mediator
        f <- opts$f     # fraction of follow-up times that are uncensored
        ns <- opts$ns   # number of observations in simulated dataset
        f11 <- rho*sqrt(f1*(1-f1)*f2*(1-f2))+f1*f2
        n11 <- round(ns*f11)
        n10 <- round(ns*(f1-f11))
        n01 <- round(ns*(f2-f11))
        n00 <- ns-n10-n01-n11
        X <- rbind(cbind(rep(0, n00), rep(0, n00)),
                   cbind(rep(1, n10), rep(0, n10)),
                   cbind(rep(0, n01), rep(1, n01)),
                   cbind(rep(1, n11), rep(1, n11)))
        time <- rexp(ns, rate = exp(X%*%as.matrix(c(b1, b2))))
        event <- ifelse(rank(time)<=round(ns*f), 1, 0)
        v2a1 <- survival::coxph(Surv(time, event)~X)$var[2, 2]*ns*f
        desc <- "cox.bbs"
        d <- (qnorm(alpha)+qnorm(gamma))^2*v2a1/b2^2
        n <- d/f
   }
   if (model.int == 24) # (14) cox.ccs2
   {
        b1 <- opts$b1      # regression coefficient (log hazard ratio) for primary predictor
        b2 <- opts$b2      # regression coefficient (log hazard ratio) for mediator
        rho <- opts$rho    # correlation of primary predictor and mediator
        f <- opts$f        # fraction of follow-up times that are uncensored
        fc <- opts$fc      # fraction of failure times that are censored before end of study
        sdx1 <- opts$sdx1  # SD of primary predictor
        sdx2 <- opts$sdx2  # SD of mediator
        ns <- opts$ns      # number of observations in simulated dataset
        S <- matrix(c(sdx1^2, rho*sdx1*sdx2, rho*sdx1*sdx2, sdx2^2), 2, 2)
        X <- matrix(rnorm(2*ns), ns, 2) %*% chol(S)
        re <- exp(X%*%as.matrix(c(b1, b2)))
        te <- rexp(ns, re)
        if (fc>0) {
           tc <- rexp(ns, mean(re)*fc/f)
        } else {
           tc <- rep(max(te)+1, ns)
        }
        time <- apply(cbind(te, tc), 1, min)
        event <- ifelse(rank(time)<=round(ns*(f+fc)) & te<tc, 1, 0)
        v2a1 <- survival::coxph(Surv(time, event)~X)$var[2, 2]*ns*f
        desc <- "cox.ccs2"
        d <- (qnorm(alpha)+qnorm(gamma))^2*v2a1/b2^2
        n <- d/f
   }
   if (model.int == 25) # (14) cox.bcs2
   {
        b1 <- opts$b1     # regression coefficient (log hazard ratio) for primary predictor
        f1 <- opts$f1     # prevalence of primary predictor
        b2 <- opts$b2     # regression coefficient (log hazard ratio) for mediator
        rho <- opts$rho   # correlation of primary predictor and mediator
        f <- opts$f       # fraction of follow-up times that are uncensored
        fc <- opts$fc     # fraction of follow-up times that are censored early
        sdx2 <- opts$sdx2 # SD of mediator
        ns <- opts$ns     # number of observations in simulated dataset
        mu0 <- -rho*sdx2*sqrt(f1/(1-f1))
        mu1 <- rho*sdx2*sqrt((1-f1)/f1)
        sdx2.1 <- sdx2*sqrt(1-rho^2)
        n1 <- round(f1*ns)
        n0 <- ns-n1
        X <- rbind(cbind(rep(0, n0), rnorm(n0, mean=mu0, sd=sdx2.1)),
                   cbind(rep(1, n1), rnorm(n1, mean=mu1, sd=sdx2.1)))
        re <- exp(X%*%as.matrix(c(b1, b2)))
        te <- rexp(ns, re)
        if (fc>0) {
           tc <- rexp(ns, mean(re)*fc/f)
        } else {
           tc <- rep(max(te)+1, ns)
        }
        time <- apply(cbind(te, tc), 1, min)
        event <- ifelse(rank(time)<=round(ns*(f+fc)) & te<tc, 1, 0)
        v2a1 <- survival::coxph(Surv(time, event)~X)$var[2, 2]*ns*f
        desc <- "cox.bcs2"
        d <- (qnorm(alpha)+qnorm(gamma))^2*v2a1/b2^2
        n <- d/f
   }
   if (model.int == 26) # (14) cox.cbs2
   {
        b1 <- opts$b1     # regression coefficient (log hazard ratio) for primary predictor
        b2 <- opts$b2     # regression coefficient (log hazard ratio) for mediator
        f2 <- opts$f2     # prevalence of mediator
        rho <- opts$rho   # correlation of primary predictor and mediator
        f <- opts$f       # fraction of follow-up times that are uncensored
        fc <- opts$fc     # fraction of follow-up times that are censored early
        sdx1 <- opts$sdx1 # SD of primary predictor
        ns <- opts$ns     # number of observations in simulated dataset
        mu0 <- -rho*sdx1*sqrt(f2/(1-f2))
        mu1 <- rho*sdx1*sqrt((1-f2)/f2)
        sdx1.2 <- sdx1*sqrt(1-rho^2)
        n1 <- round(f2*ns)
        n0 <- ns-n1
        X <- rbind(cbind(rnorm(n0, mean=mu0, sd=sdx1.2), rep(0, n0)),
                   cbind(rnorm(n1, mean=mu1, sd=sdx1.2), rep(1, n1)))
        re <- exp(X%*%as.matrix(c(b1, b2)))
        te <- rexp(ns, re)
        if (fc>0) {
           tc <- rexp(ns, mean(re)*fc/f)
        } else {
           tc <- rep(max(te)+1, ns)
        }
        time <- apply(cbind(te, tc), 1, min)
        event <- ifelse(rank(time)<=round(ns*(f+fc)) & te<tc, 1, 0)
        v2a1 <- survival::coxph(Surv(time, event)~X)$var[2, 2]*ns*f
        desc <- "cox.cbs2"
        d <- (qnorm(alpha)+qnorm(gamma))^2*v2a1/b2^2
        n <- d/f
   }
   if (model.int == 27) # (14) cox.bbs2
   {
        b1 <- opts$b1   # regression coefficient (log hazard ratio) for primary predictor
        f1 <- opts$f1   # prevalence of primary predictor
        b2 <- opts$b2   # regression coefficient (log hazard ratio) for mediator
        f2 <- opts$f2   # prevalence of mediator
        rho <- opts$rho # correlation of primary predictor and mediator
        f <- opts$f     # fraction of follow-up times that are uncensored
        fc <- opts$fc   # fraction of follow-up times that are censored early
        ns <- opts$ns   # number of observations in simulated dataset
        f11 <- rho*sqrt(f1*(1-f1)*f2*(1-f2))+f1*f2
        n11 <- round(ns*f11)
        n10 <- round(ns*(f1-f11))
        n01 <- round(ns*(f2-f11))
        n00 <- ns-n10-n01-n11
        X <- rbind(cbind(rep(0, n00), rep(0, n00)),
                   cbind(rep(1, n10), rep(0, n10)),
                   cbind(rep(0, n01), rep(1, n01)),
                   cbind(rep(1, n11), rep(1, n11)))
        re <- exp(X%*%as.matrix(c(b1, b2)))
        te <- rexp(ns, re)
        if (fc>0) {
           tc = rexp(ns, mean(re)*fc/f)
        } else {
           tc = rep(max(te)+1, ns)
        }
        time <- apply(cbind(te, tc), 1, min)
        event <- ifelse(rank(time)<=round(ns*(f+fc)) & te<tc, 1, 0)
        v2a1 <- survival::coxph(Surv(time, event)~X)$var[2, 2]*ns*f
        desc <- "cox.bbs2"
        d <- (qnorm(alpha)+qnorm(gamma))^2*v2a1/b2^2
        n <- d/f
   }
   if (model.int < 19) list(desc=desc, n=round(n))
   else list(desc=desc, d=round(d), n = round(n))
}

# 23-6-2010 MRC-Epid JHZ

Try the gap package in your browser

Any scripts or data that you put into this service are public.

gap documentation built on Aug. 26, 2023, 5:07 p.m.