R/latent.regression.em.R

Defines functions latent.regression.em

## File Name: latent.regression.em.R
## File Version: 0.243

latent.regression.em <- function( data, X, weights=rep(1,nrow(data)),
        beta.init=rep(0,ncol(X)), sigma.init=1, b=b, a=rep(1, length(b)),
        c=rep(0, length(b)), max.parchange=.0001, theta.list=seq(-5,5,len=50),
        maxiter=300 )
{
    X <- as.matrix(X)   # matrix format
    # init parameters
    beta0 <- beta.init
    sig0 <- sigma.init
    # normalize sample weights
    weights <- length(weights) * weights / sum(weights)
    # initialize iteration index and value of parameter change
    iter <- 1
    parchange <- 1000
    while( ( parchange > max.parchange ) & ( iter < maxiter ) ){
        # estimate posterior density
        pv1 <- plausible.value.draw( data=data, X=X, beta0=beta0, sig0=sig0,
                    b=b, a=a, c=c, theta.list=theta.list, pvdraw=FALSE )
        # estimate latent regression model (linear model)
        mod <- stats::lm( pv1$EAP ~ 0 + X, weights=weights)
        cmod <- stats::coef(mod)
        # Calculation of residual sd
        sigma <- sqrt( mean( weights* ( pv1$SE.EAP^2 + stats::resid(mod)^2 ) ) )
        parchange <- max( abs(sigma - sig0), abs( cmod - beta0) )
        cat( paste("Iteration ", iter,": max parm. change ",
                    round( parchange, 8 ),sep=""),
                    " # Regr. Coeff. ", as.vector(cmod), "\n")
        utils::flush.console()
        # parameter update
        sig0 <- sigma
        beta0 <- cmod
        iter <- iter + 1
    }
    # standard errors for regression coefficients
    V <- ncol(X)    # number of X variables (predictors)
    scoefs <- matrix( 0, nrow=V, ncol=5 )
    scoefs <- data.frame(scoefs)
    colnames(scoefs) <- c("est", "se.simple", "se", "t", "p" )
    rownames(scoefs) <- names(beta0)
    scoefs[,1] <- beta0
    for (vv in 1:V){
        xvv <- X[,vv]
        scoefs[vv,2] <- sqrt( 1 / sum( weights * xvv^2  / sigma^2 ) )
        h1 <- weights * xvv^2  / sigma^2 * ( 1 - pv1$SE.EAP^2 / sigma^2 )
        h1[ h1<0] <- 0
        scoefs[vv,3] <- sqrt( 1 / sum( h1 ) )
    }
    scoefs$t <- scoefs$est / scoefs$se
    scoefs$p <- 2 * ( 1 - stats::pnorm( abs( scoefs$t ) ) )
    if ( ! is.null( colnames(X) ) ){
        rownames(scoefs) <- colnames(X)   # use column names of X
    }
    #--- output
    res <- list( iterations=iter-1, maxiter=maxiter, max.parchange=max.parchange,
            coef=beta0, summary.coef=scoefs, sigma=sigma )
    return(res)
}

Try the miceadds package in your browser

Any scripts or data that you put into this service are public.

miceadds documentation built on May 29, 2024, 11:05 a.m.