R/clm2.R

Defines functions makeThresholds2 fixed TraceR grad.lambda addterm.clm2 dropterm.clm2 update.clm2 extractAIC.clm2 logLik.clm2 plot.profile.clm2 confint.profile.clm2 confint.clm2 profileLambda profile.clm2 predict.clm2 print.summary.clm2 summary.clm2 vcov.clm2 print.clm2 finalizeRho fitCLM fitNR .hessian .grad .negLogLik getHnll getGnll getNll getPar setStart newRho clm2.control

Documented in addterm.clm2 clm2.control confint.clm2 confint.profile.clm2 dropterm.clm2 plot.profile.clm2 predict.clm2 profile.clm2 update.clm2

#############################################################################
##    Copyright (c) 2010-2022 Rune Haubo Bojesen Christensen
##
##    This file is part of the ordinal package for R (*ordinal*)
##
##    *ordinal* is free software: you can redistribute it and/or modify
##    it under the terms of the GNU General Public License as published by
##    the Free Software Foundation, either version 2 of the License, or
##    (at your option) any later version.
##
##    *ordinal* is distributed in the hope that it will be useful,
##    but WITHOUT ANY WARRANTY; without even the implied warranty of
##    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
##    GNU General Public License for more details.
##
##    A copy of the GNU General Public License is available at
##    <https://www.r-project.org/Licenses/> and/or
##    <http://www.gnu.org/licenses/>.
#############################################################################
## This file contains:
## An alternate (and older) implementation of CLMs in clm2(). The new
## and recommended implementation is available in clm(), cf. ./R/clm.R

clm2.control <-
    function(method = c("ucminf", "Newton", "nlminb", "optim",
             "model.frame"), ..., convTol = 1e-4,
             trace = 0, maxIter = 100, gradTol = 1e-5,
             maxLineIter = 10)
{
    method <- match.arg(method)
    ctrl <-
        if(method == "Newton")
            list(convTol=convTol, trace=trace, maxIter=maxIter,
                 gradTol=gradTol, maxLineIter=maxLineIter)
        else
            list(trace = abs(trace), ...)

    if(!all(is.numeric(c(maxIter, gradTol, maxLineIter, convTol))))
        stop("maxIter, gradTol, maxLineIter, convTol should all be numeric")
    if(convTol <= 0)
        stop("convTol should be > 0")
    if(method == "ucminf" && !"grtol" %in% names(ctrl))
        ctrl$grtol <- gradTol
##     if(method == "ucminf" && convTol > ctrl$grtol)
##         stop("convTol should be <= grtol/gradTol")
##     if(method == "Newton" && convTol > gradTol)
##         stop("convTol should be <= gradTol")

    list(method = method, convTol = convTol, ctrl = ctrl)
}

newRho <- function(parent, XX, X, Z, y, weights, Loffset, Soffset, ## OK
                   link, lambda, theta, threshold, Hess, control)
### OPTION: Could we remove the theta argument?
{
    rho <- new.env(parent = parent)
    rho$X <- X
    rho$dnX <- dimnames(X)
    dimnames(rho$X) <- NULL
    rho$Z <- Z
    rho$dnZ <- dimnames(Z)
    dimnames(rho$Z) <- NULL
    rho$weights <- weights
    rho$Loffset <- Loffset
    rho$expSoffset <- rho$sigma <- exp(Soffset)
    rho$Hess <- ifelse(Hess, 1L, 0L)
    rho$method <- control$method
    rho$convTol <- control$convTol
    rho$ctrl <- control$ctrl

    rho$pfun <- switch(link,
                       logistic = plogis,
                       probit = pnorm,
                       cloglog = function(x) pgumbel(x, max=FALSE),
                       cauchit = pcauchy,
                       loglog = pgumbel,
                       "Aranda-Ordaz" = function(x, lambda) pAO(x, lambda),
                       "log-gamma" = function(x, lambda) plgamma(x, lambda))
    rho$dfun <- switch(link,
                       logistic = dlogis,
                       probit = dnorm,
                       cloglog = function(x) dgumbel(x, max=FALSE),
                       cauchit = dcauchy,
                       loglog = dgumbel,
                       "Aranda-Ordaz" = function(x, lambda) dAO(x, lambda),
                       "log-gamma" = function(x, lambda) dlgamma(x, lambda))
    rho$gfun <- switch(link,
                       logistic = glogis,
                       probit = function(x) -x * dnorm(x),
                       cloglog = function(x) ggumbel(x, max=FALSE),
                       cloglog = ggumbel,
                       cauchit = gcauchy,
                       "Aranda-Ordaz" = function(x, lambda) gAO(x, lambda), ## shouldn't happen
                       "log-gamma" = function(x, lambda) glgamma(x, lambda)
                       )
    rho$link <- link
    rho$linkInt <- switch(link,
                          logistic = 1L,
                          probit = 2L,
                          cloglog = 3L,
                          loglog = 4L,
                          cauchit = 5L,
                          "Aranda-Ordaz" = 6L,
                          "log-gamma" = 7L)
    rho$estimLambda <- ifelse(link %in% c("Aranda-Ordaz", "log-gamma") &&
                              is.null(lambda), 1L, 0L)
    rho$nlambda <- 0L
    rho$lambda <-
        if(!is.null(lambda)) lambda
        else 1
    if(link %in% c("Aranda-Ordaz", "log-gamma"))
        rho$nlambda <- 1L

    if(rho$estimLambda > 0 & rho$link == "Aranda-Ordaz" &
       rho$method != "nlminb"){
        message("Changing to nlminb optimizer to accommodate optimization with bounds")
        m <- match( names(rho$ctrl), "grtol", 0)
        rho$ctrl <- rho$ctrl[!m]
        rho$method <- "nlminb"
    }
    if(rho$method == "nlminb") {
        rho$limitUp <- Inf
        rho$limitLow <- -Inf
    }

    rho$n <- n <- length(y)
    rho$p <- ifelse(missing(X), 0, ncol(X))
    rho$k <- ifelse(missing(Z), 0, ncol(Z))
    rho$y <- y
    rho$threshold <- threshold
    rho$ncolXX <- ncol(XX)
    rho$dnXX <- dimnames(XX)
    rho$lev <- levels(y)
    rho$ntheta <- nlevels(y) - 1
    rho$B2 <- 1 * (col(matrix(0, n, rho$ntheta + 1)) == c(unclass(y)))
### Setting elements of o[12] to [+-]Inf cause problems in
### getGnll and clmm-related functions because 1) 0*Inf = NaN, while
### 0*large.value = 0, so several computations have to be handled
### specially and 2) Inf-values are not by default allowed in .C calls
### and all specials would have to be handled separately.
    ## o1 <- B2[, rho$ntheta + 1, drop = TRUE]
    ## o1[o1 == 1] <- Inf
    ## rho$o1 <- o1 - rho$Loffset
    ## o2 <- B2[,1, drop = TRUE]
    ## o2[o2 == 1] <- -Inf
    ## rho$o2 <- o2 - rho$Loffset
    inf.value <- 1e5
    rho$o1 <- c(inf.value * rho$B2[, rho$ntheta + 1]) - rho$Loffset
    rho$o2 <- c(-inf.value * rho$B2[,1]) - rho$Loffset
    rho$B1 <- rho$B2[,-(rho$ntheta + 1), drop = FALSE]
    rho$B2 <- rho$B2[,-1, drop = FALSE]
    makeThresholds2(rho, threshold)
    rho$B1 <- rho$B1 %*% rho$tJac
    rho$B2 <- rho$B2 %*% rho$tJac
    rho$xiNames <- rho$alphaNames
    rho$nxi <- rho$nalpha * rho$ncolXX
    if(rho$ncolXX > 1) { ## test actually not needed
        rho$xiNames <- paste(rep(rho$alphaNames, rho$ncolXX), ".",
                             rep(colnames(XX), each=rho$nalpha), sep="")
        LL1 <- lapply(1:rho$ncolXX, function(x) rho$B1 * XX[,x])
        rho$B1 <- do.call(cbind, LL1)
        LL2 <- lapply(1:rho$ncolXX, function(x) rho$B2 * XX[,x])
        rho$B2 <- do.call(cbind, LL2)
    }
    if(rho$p > 0) {
        rho$B1 <- cbind(rho$B1, -X)
        rho$B2 <- cbind(rho$B2, -X)
    }
    dimnames(rho$B1) <- NULL
    dimnames(rho$B2) <- NULL
    return(rho)
} # populates the rho environment

setStart <- function(rho) ## Ok
{ ## set starting values in the rho environment
    ## try logistic/probit regression on 'middle' cut
    q1 <- max(1, rho$ntheta %/% 2)
    y1 <- (c(unclass(rho$y)) > q1)
    x <- cbind(Intercept = rep(1, rho$n), rho$X)
    fit <-
        switch(rho$link,
               "logistic"= glm.fit(x, y1, rho$weights, family = binomial(), offset = rho$Loffset),
               "probit" = glm.fit(x, y1, rho$weights, family = binomial("probit"), offset = rho$Loffset),
               ## this is deliberate, a better starting point
               "cloglog" = glm.fit(x, y1, rho$weights, family = binomial("probit"), offset = rho$Loffset),
               "loglog" = glm.fit(x, y1, rho$weights, family = binomial("probit"), offset = rho$Loffset),
               "cauchit" = glm.fit(x, y1, rho$weights, family = binomial("cauchit"), offset = rho$Loffset),
               "Aranda-Ordaz" = glm.fit(x, y1, rho$weights, family = binomial("probit"), offset = rho$Loffset),
               "log-gamma" = glm.fit(x, y1, rho$weights, family = binomial("probit"), offset = rho$Loffset))
    if(!fit$converged)
        stop("attempt to find suitable starting values failed")
    coefs <- fit$coefficients
    if(any(is.na(coefs))) {
        warning("design appears to be rank-deficient, so dropping some coefs")
        keep <- !is.na(coefs)
        coefs <- coefs[keep]
        rho$X <- rho$X[, keep[-1], drop = FALSE]
        rho$dnX[[2]] <- rho$dnX[[2]][keep[-1]]
        rho$B1 <- rho$B1[, c(rep(TRUE, rho$nxi), keep[-1]), drop = FALSE]
        rho$B2 <- rho$B2[, c(rep(TRUE, rho$nxi), keep[-1]), drop = FALSE]
        rho$p <- ncol(rho$X)
    }
    ## Intercepts:
    spacing <- qlogis((1:rho$ntheta)/(rho$ntheta+1)) # just a guess
    if(rho$link != "logit") spacing <- spacing/1.7
    ## if(rho$threshold == "flexible") # default
    alphas <- -coefs[1] + spacing - spacing[q1]
    if(rho$threshold == "symmetric" && rho$ntheta %% 2) ## ntheta odd
        alphas <- c(alphas[q1+1],cumsum(rep(spacing[q1+2], rho$nalpha-1)))
    if(rho$threshold == "symmetric" && !rho$ntheta %% 2) ## ntheta even
        alphas <- c(alphas[q1:(q1+1)], cumsum(rep(spacing[q1+1], rho$nalpha-2)))
    if(rho$threshold == "symmetric2" && rho$ntheta %% 2) ## ntheta odd
        alphas <- cumsum(rep(spacing[q1+2], rho$nalpha-1))
    if(rho$threshold == "symmetric2" && !rho$ntheta %% 2) ## ntheta even
        alphas <- cumsum(rep(spacing[q1+1], rho$nalpha-2))
    if(rho$threshold == "equidistant")
        alphas <- c(alphas[1], mean(diff(spacing)))
    ## initialize nominal effects to zero:
    if(rho$ncolXX > 1) {
        xi <- c(alphas, rep(rep(0, rho$nalpha), rho$ncolXX-1))
        stopifnot(length(xi) == rho$nalpha * rho$ncolXX)}
    else xi <- alphas
    if(rho$estimLambda > 0){
        rho$lambda <- 1
        names(rho$lambda) <- "lambda"
    }
    start <- c(xi, coefs[-1], rep(0, rho$k), rep(1, rho$estimLambda))
    names(start) <- NULL
    rho$start <- rho$par <- start
}

getPar <- function(rho) rho$par ## OK

getNll <- function(rho, par)  { ## ok
  if(!missing(par))
    rho$par <- par
  with(rho, {
    if(estimLambda > 0)
      lambda <- par[nxi + p + k + 1:estimLambda]
    sigma <-
      if(k > 0) expSoffset * exp(drop(Z %*% par[nxi+p + 1:k]))
      else expSoffset
    eta1 <- (drop(B1 %*% par[1:(nxi + p)]) + o1)/sigma
    eta2 <- (drop(B2 %*% par[1:(nxi + p)]) + o2)/sigma
    pr <-
      if(nlambda) pfun(eta1, lambda) - pfun(eta2, lambda)
      else pfun(eta1) - pfun(eta2)
    if(all(is.finite(pr)) && all(pr > 0)) -sum(weights * log(pr))
    else Inf
  })
}

getGnll <- function(rho, par)  { ## ok
  if(!missing(par))
    rho$par <- par
  with(rho, {
    if(estimLambda > 0)
      lambda <- par[nxi + p + k + 1:estimLambda]
    sigma <-
      if(k > 0) expSoffset * exp(drop(Z %*% par[nxi+p + 1:k]))
      else expSoffset
    eta1 <- (drop(B1 %*% par[1:(nxi + p)]) + o1)/sigma
    eta2 <- (drop(B2 %*% par[1:(nxi + p)]) + o2)/sigma
    if(nlambda) {
      pr <- pfun(eta1, lambda) - pfun(eta2, lambda)
      p1 <- dfun(eta1, lambda)
      p2 <- dfun(eta2, lambda)
    }
    else {
      pr <- pfun(eta1) - pfun(eta2)
      p1 <- dfun(eta1)
      p2 <- dfun(eta2)
    }
    prSig <- pr * sigma
    ## eta1 * p1 is complicated because in theory eta1 contains
    ## Inf(-Inf) where p1 contains 0 and 0 * Inf = NaN...
    ## eta.p1 <- ifelse(p1 == 0, 0, eta1 * p1)
    ## eta.p2 <- ifelse(p2 == 0, 0, eta2 * p2)
    gradSigma <-
      ## if(k > 0) crossprod(Z, weights * (eta.p1 - eta.p2)/pr)
      if(k > 0) crossprod(Z, weights * (eta1 * p1 - eta2 * p2)/pr)
      else numeric(0)
    gradThetaBeta <-
      if(nxi > 0) -crossprod((B1*p1 - B2*p2), weights/prSig)
      else -crossprod((X * (p2 - p1)), weights/prSig)
    grad <-
    ##   if (all(is.finite(pr)) && all(pr > 0))
    ##     c(gradThetaBeta, gradSigma)
    ##   else rep(Inf, nxi + p + k)
      c(gradThetaBeta, gradSigma)
  })
  if(rho$estimLambda > 0)
    c(rho$grad, grad.lambda(rho, rho$lambda, rho$link))
  else
    rho$grad
}

getHnll <- function(rho, par)  { ## ok
    if(!missing(par))
        rho$par <- par
    with(rho, {
        eta1 <- drop(B1 %*% par[1:(nxi + p)]) + o1
        eta2 <- drop(B2 %*% par[1:(nxi + p)]) + o2
        pr <- pfun(eta1) - pfun(eta2)
        p1 <- dfun(eta1)
        p2 <- dfun(eta2)
        g1 <- gfun(eta1)
        g2 <- gfun(eta2)
        wtpr <- weights/pr

        dS.psi <- -crossprod(B1 * g1*wtpr, B1) +
            crossprod(B2 * g2*wtpr, B2)
        dpi.psi <- B1 * p1 - B2 * p2
###    dS.pi <- dpi.psi * wtpr/pr
        if (all(pr > 0))
            dS.psi + crossprod(dpi.psi, (dpi.psi * wtpr/pr))
        else array(NA, dim = c(nxi + p, nxi + p))
    })
}

.negLogLik <- function(rho) { ## negative log-likelihood ## OK
    with(rho, {
        eta1 <- drop(B1 %*% par[1:(nxi + p)]) + o1
        eta2 <- drop(B2 %*% par[1:(nxi + p)]) + o2
        pr <- pfun(eta1) - pfun(eta2)
        if (all(pr > 0))
            -sum(weights * log(pr))
        else Inf
    })
}

.grad <- function(rho) { ## gradient of the negative log-likelihood ## OK
    with(rho, {
        p1 <- dfun(eta1)
        p2 <- dfun(eta2)
        wtpr <- weights/pr
        if (all(pr > 0))
            -crossprod((B1 * p1 - B2 * p2), wtpr)
        else rep(NA, nalpha + p)
    })
}

.hessian <- function(rho) { ## hessian of the negative log-likelihood ## OK
    with(rho, {
        dS.psi <- crossprod(B1 * gfun(eta1)*wtpr, B1) -
            crossprod(B2 * gfun(eta2)*wtpr, B2)
        dpi.psi <- B1 * p1 - B2 * p2
        if (all(pr > 0))
            -dS.psi + crossprod(dpi.psi, (dpi.psi * wtpr/pr))
        else array(NA, dim = c(nxi+p, nxi+p))
    })
}

fitNR <- function(rho) ## OK
{
    ctrl <- rho$ctrl
    stepFactor <- 1
    innerIter <- 0
    conv <- 1  ## Convergence flag
    message <- "iteration limit reached"
    rho$negLogLik <- .negLogLik(rho)
    if(rho$negLogLik == Inf)
        stop("Non-finite log-likelihood at starting value")
    rho$gradient <- .grad(rho)
    maxGrad <- max(abs(rho$gradient))
    if(ctrl$trace > 0)
        Trace(iter=0, stepFactor, rho$negLogLik, maxGrad, rho$par, first=TRUE)

    ## Newton-Raphson algorithm:
    for(i in 1:ctrl$maxIter) {
        if(maxGrad < ctrl$gradTol) {
            message <- "max|gradient| < tol, so current iterate is probably solution"
            if(ctrl$trace > 0)
                cat("\nOptimizer converged! ", "max|grad|:",
                    maxGrad, message, fill = TRUE)
            conv <- 0
            break
        }
        rho$Hessian <- .hessian(rho)
        ## step <- .Call("La_dgesv", rho$Hessian, rho$gradient, .Machine$double.eps,
        ##               PACKAGE = "base") ## solve H*step = g for 'step'
        step <- as.vector(solve(rho$Hessian, rho$gradient))
        rho$par <- rho$par - stepFactor * step
        negLogLikTry <- .negLogLik(rho)
        lineIter <- 0
        ## simple line search, i.e. step halfing:
        while(negLogLikTry > rho$negLogLik) {
            stepFactor <- stepFactor/2
            rho$par <- rho$par + stepFactor * step
            negLogLikTry <- .negLogLik(rho)
            lineIter <- lineIter + 1
            if(ctrl$trace > 0)
                Trace(i+innerIter, stepFactor, rho$negLogLik, maxGrad,
                      rho$par, first=FALSE)
            if(lineIter > ctrl$maxLineIter){
                message <- "step factor reduced below minimum"
                conv <- 2
                break
            }
            innerIter <- innerIter + 1
        }
        rho$negLogLik <- negLogLikTry
        rho$gradient <- .grad(rho)
        maxGrad <- max(abs(rho$gradient))
        if(ctrl$trace > 0)
            Trace(iter=i+innerIter, stepFactor, rho$negLogLik,
                  maxGrad, rho$par, first=FALSE)
        stepFactor <- min(1, 2 * stepFactor)
    }
    if(conv > 0)
        if(ctrl$trace > 0) cat(message, fill = TRUE)
    ## Save info
    rho$optRes$niter <- c(outer = i, inner = innerIter)
    rho$logLik <- -rho$negLogLik
    rho$maxGradient <- maxGrad
    rho$gradient <- as.vector(rho$gradient)
    rho$Hessian <- .hessian(rho)
    rho$optRes$message <- message
    rho$optRes$convergence <- conv
}


fitCLM <- function(rho) { ## OK
    if(rho$method == "Newton") {
        if(rho$k != 0)
            stop("Newton scheme not implemented for models with scale")
        if(rho$ncolXX > 1)
            stop("Newton scheme not implemented for models with nominal effects")
        if(rho$link %in% c("Aranda-Ordaz", "log-gamma"))
            stop("Newton scheme not implemented for models with",
                 rho$link, "link function")
        fitNR(rho)
        return(invisible())
    }
    optRes <- switch(rho$method,
                  "nlminb" = nlminb(getPar(rho), function(par)
                  getNll(rho, par), function(par) getGnll(rho, par),
                  control=rho$ctrl, lower = rho$limitLow,
                  upper = rho$limitUp),
                  "ucminf" = ucminf(getPar(rho), function(par)
                  getNll(rho, par), function(par) getGnll(rho, par),
                  control=rho$ctrl),
                  "optim" = optim(getPar(rho), function(par)
                  getNll(rho, par), function(par) getGnll(rho, par),
                  method="BFGS", control=rho$ctrl),
                  )
    rho$par <- optRes[[1]]
    rho$logLik <- - getNll(rho, optRes[[1]])
    rho$optRes <- optRes

    rho$gradient <- c(getGnll(rho))
    rho$maxGradient <- max(abs(rho$gradient))
    if(rho$maxGradient > rho$convTol)
        warning("clm2 may not have converged:\n  optimizer ", rho$method,
                " terminated with max|gradient|: ", rho$maxGradient,
                call.=FALSE)
    return(invisible())
}

finalizeRho <- function(rho) { ## OK
    if(rho$method != "Newton") {
        rho$gradient <- c(getGnll(rho))
        rho$maxGradient <- max(abs(rho$gradient))
        rho$par <- rho$optRes[[1]]
        if(rho$Hess) {
            if(rho$k > 0 || rho$threshold != "flexible" ||
               rho$ncolXX > 1 || rho$nlambda > 0) {
                if(rho$link == "Aranda-Ordaz" &&
                   rho$estimLambda > 0 && rho$lambda < 1e-3)
                    message("Cannot get Hessian because lambda = ",rho$lambda
                            ," is too close to boundary.\n",
                            " Fit model with link == 'logistic' to get Hessian")
                else {
                    rho$Hessian <- myhess(function(par) getNll(rho, par),
                                           rho$par)
                    getNll(rho, rho$optRes[[1]]) # to reset the variables:
                                        # (par, pr)
                }
            }
            else
                rho$Hessian <- getHnll(rho, rho$optRes[[1]])
        }
    }
    rho$convergence <-
        ifelse(rho$maxGradient > rho$convTol, FALSE, TRUE)

    with(rho, {
        if(nxi > 0) {
            xi <- par[seq_len(nxi)]
            names(xi) <- xiNames
            thetaNames <- paste(lev[-length(lev)], lev[-1], sep="|")
            Alpha <- Theta <- matrix(par[1:nxi], nrow=ncolXX, byrow=TRUE)
            Theta <- t(apply(Theta, 1, function(x) c(tJac %*% x)))
            if(ncolXX > 1){
                dimnames(Theta) <- list(dnXX[[2]], thetaNames)
                dimnames(Alpha) <- list(dnXX[[2]], alphaNames)
            }
            else {
                Theta <- c(Theta)
                Alpha <- c(Alpha)
                names(Theta) <- thetaNames
                names(Alpha) <- alphaNames
            }
            coefficients <- xi
        }
        else coefficients <- numeric(0)
        if(p > 0) {
            beta <- par[nxi + 1:p]
            names(beta) <- dnX[[2]]
            coefficients <- c(coefficients, beta)
        }
        if(k > 0) {
            zeta <- par[nxi+p + 1:k]
            names(zeta) <- dnZ[[2]]
            coefficients <- c(coefficients, zeta)
        }
        if(estimLambda > 0) {
            names(lambda) <- "lambda"
            coefficients <- c(coefficients, lambda)
        }
        names(gradient) <- names(coefficients)
        edf <- p + nxi + k + estimLambda
        nobs <- sum(weights)

        fitted.values <- pr
        df.residual <- nobs - edf
        if(exists("Hessian", inherits=FALSE)) {
            dimnames(Hessian) <- list(names(coefficients),
                                      names(coefficients))
        }
    })
    res <- as.list(rho)
    keepNames <-
        c("df.residual", "fitted.values", "edf", "start",
          "beta", "coefficients", "zeta", "Alpha", "Theta",
          "xi", "lambda", "convergence", "Hessian", "convTol",
          "gradient", "optRes", "logLik", "call",
          "scale", "location", "nominal", "method", "y", "lev",
          "nobs", "threshold", "estimLambda", "link",
          "contrasts", "na.action")
    m <- match(keepNames, names(res), 0)
    res <- res[m]
    res
}

clm2 <- ## OK
  function(location, scale, nominal, data, weights, start, subset,
           na.action, contrasts, Hess = TRUE, model = TRUE,
           link = c("logistic", "probit", "cloglog", "loglog",
           "cauchit", "Aranda-Ordaz", "log-gamma"), lambda,
           doFit = TRUE, control,
           threshold = c("flexible", "symmetric", "equidistant"), ...)
{
    L <- match.call(expand.dots = FALSE)
    if(missing(location))
        stop("Model needs a specification of the location")
    if(missing(lambda)) lambda <- NULL
    if(missing(contrasts)) contrasts <- NULL
    link <- match.arg(link)
    if(!(link %in% c("Aranda-Ordaz", "log-gamma")) & !is.null(lambda)){
        warning("lambda ignored with link ", link)
        lambda <- NULL
    }
    if(!is.null(lambda) & length(lambda) > 1) {
        lambda <- lambda[1]
        warning("lambda is ", length(lambda),
                " long. Only the first element ", lambda[1], " is used")
    }
    if(!is.null(lambda) & link == "Aranda-Ordaz")
        if(lambda < 1e-6)
            stop("lambda has to be positive and lambda < 1e-6 not allowed for numerical reasons. lambda = ",
                 lambda, " was supplied.")
    if (missing(control)) control <- clm2.control(...)
    if(!setequal(names(control), c("method", "convTol", "ctrl")))
        stop("specify 'control' via clm2.control()")

    if (missing(data)) L$data <- environment(location)
    if (is.matrix(eval.parent(L$data)))
        L$data <- as.data.frame(L$data)

### Collect variables in location, scale and nominal formulae in a
### single formula, evaluate the model.frame and get index of row
### names for the rows to keep in the individual model.frames:
    m <- match(c("location", "scale", "nominal"), names(L), 0)
    F <- lapply(as.list(L[m]), eval.parent) ## evaluate in parent
    ## frame to allow 'f <- formula(sureness ~ prod); clm2(f, ...)'
    varNames <- unique(unlist(lapply(F, all.vars)))
    longFormula <-
        eval(parse(text = paste("~", paste(varNames, collapse = "+")))[1])
    m <- match(c("location", "data", "subset", "weights",
                  "na.action"), names(L), 0)
    L0 <- L[c(1, m)]
    if(!missing(scale) || !missing(nominal))
        L0$location <- longFormula
    L0$drop.unused.levels <- TRUE
    L0[[1]] <- as.name("model.frame")
    names(L0)[names(L0) == "location"] <- "formula"
    L0 <- eval.parent(L0)
    m <- match(c("location", "scale", "nominal", "data", "subset",
                 "weights", "na.action"), names(L), 0)
    L <- L[c(1, m)]
    L$drop.unused.levels <- TRUE
    L[[1]] <- as.name("model.frame")
    S <- L ## L: Location, S: Scale
    L$scale <- L$nominal <- NULL
    names(L)[names(L) == "location"] <- "formula"
    L <- eval.parent(L)
    keep <- match(rownames(L0), rownames(L))
    L <- L[keep, , drop = FALSE]
    TermsL <- attr(L, "terms")

### format response:
    y <- model.response(L)
    if(!is.factor(y))
        stop("response needs to be a factor")

### format thresholds:
    threshold <- match.arg(threshold)

### format location:
    X <- model.matrix(TermsL, L, contrasts)
    Xint <- match("(Intercept)", colnames(X), nomatch = 0)
    if (Xint > 0) X <- X[, -Xint, drop = FALSE]
    else warning("an intercept is needed and assumed in the location")
    n <- nrow(X)
    if(is.null(wt <- model.weights(L))) wt <- rep(1, n)
    if(is.null(Loffset <- model.offset(L))) Loffset <- rep(0, n)

### Format nominal:
    if(!missing(nominal)) {
        Nom <- S
        Nom$location <- Nom$scale <- NULL
        names(Nom)[names(Nom) == "nominal"] <- "formula"
        Nom <- eval.parent(Nom)
        Nom <- Nom[match(rownames(L0), rownames(Nom)), ,drop=FALSE]
        TermsNom <- attr(Nom, "terms")
        XX <- model.matrix(TermsNom, Nom)## , contrasts)
### Not allowing other than treatment contrasts in nominal
        if(is.null(Noffset <- model.offset(Nom))) Noffset <- rep(0, n)
        Nint <- match("(Intercept)", colnames(XX), nomatch = 0)
        if(Nint != 1)
            stop("An intercept is needed in the nominal formula")
### Are there any requirements about the presence of an
### intercept in the nominal formula?
    }
    else
        XX <- array(1, dim=c(n, 1))

### format scale:
    if(!missing(scale)) {
        S$location <- S$nominal <- NULL
        names(S)[names(S) == "scale"] <- "formula"
        S <- eval.parent(S)
        S <- S[match(rownames(L0), rownames(S)), ,drop=FALSE]
        TermsS <- attr(S, "terms")
### Should contrasts be allowed for the scale?
        Z <- model.matrix(TermsS, S, contrasts)
        Zint <- match("(Intercept)", colnames(Z), nomatch = 0)
        if(Zint > 0) Z <- Z[, -Zint, drop = FALSE]
        else warning("an intercept is needed and assumed in the scale")
        if(is.null(Soffset <- model.offset(S))) Soffset <- rep(0, n)
        if(ncol(Z) > 0 && n != nrow(Z)) # This shouldn't happen
            stop("Model needs same dataset in location and scale")
    } else if(missing(scale) && !is.factor(y)){
        Z <- array(1, dim = c(n, 1))
        Soffset <- rep(0, n)
    } else {
        Z <- array(dim = c(n, 0))
        Soffset <- rep(0, n)
    }

### return model.frame?
    if(control$method == "model.frame") {
        mf <- list(location = L)
        if(!missing(scale)) mf$scale <- S
        if(!missing(nominal)) mf$nominal <- Nom
        return(mf)
    }

### initialize and populate rho environment:
    rho <- newRho(parent.frame(), XX = XX, X=X, Z=Z, y=y, weights=wt,
                  Loffset=Loffset, Soffset=Soffset, link=link,
                  lambda = lambda, threshold=threshold,
                  Hess = Hess, control = control)

### get starting values:
    if(missing(start))
        setStart(rho)
    else
        rho$start <- rho$par <- start
    if(rho$estimLambda > 0 & rho$link == "Aranda-Ordaz")
        rho$limitLow <- c(rep(-Inf, length(rho$par)-1), 1e-5)
    if(length(rho$start) != with(rho, nxi + p + k + estimLambda))
        stop("'start' is not of the correct length")
### OPTION: Could consider better check of increasing thresholds when 
### ncol(XX) > 0
    if(ncol(XX) == 0) {
        if(!all(diff(c(rho$tJac %*% rho$start[1:rho$nalpha])) > 0))
            stop("Threshold starting values are not of increasing size")
    }
    if(!getNll(rho) < Inf)
        stop("Non-finite log-likelihood at starting values")
    if(model) {
        rho$location <- L
        if(!missing(scale)) rho$scale <- S
        if(!missing(nominal)) rho$nominal <- Nom
    }

### fit the model:
    if(!doFit)
        return(rho)
    fitCLM(rho)
    res <- finalizeRho(rho)

### add to output:
    res$call <- match.call()
    res$na.action <- attr(L0, "na.action")
    res$contrasts <- contrasts
    class(res) <- "clm2"
    res
}

print.clm2 <- function(x, ...)
{
    if(!is.null(cl <- x$call)) {
        cat("Call:\n")
        dput(cl, control=NULL)
    }
    if(length(x$beta)) {
        cat("\nLocation coefficients:\n")
        print(x$beta, ...)
    } else {
        cat("\nNo location coefficients\n")
    }
    if(length(x$zeta)) {
        cat("\nScale coefficients:\n")
        print(x$zeta, ...)
    } else {
        cat("\nNo Scale coefficients\n")
    }
    if(x$estimLambda > 0) {
        cat("\nLink coefficient:\n")
        print(x$lambda)
    }
    if(length(x$xi) > 0) {
        cat("\nThreshold coefficients:\n")
        print(x$Alpha, ...)
        if(x$threshold != "flexible") {
            cat("\nThresholds:\n")
            print(x$Theta, ...)
        }
    }
    cat("\nlog-likelihood:", format(x$logLik, nsmall=2), "\n")
    cat("AIC:", format(-2*x$logLik + 2*x$edf, nsmall=2), "\n")
    if(nzchar(mess <- naprint(x$na.action))) cat("(", mess, ")\n", sep="")
    invisible(x)
}

vcov.clm2 <- function(object, ...)
{
  if(is.null(object$Hessian)) {
    message("\nRe-fitting to get Hessian\n")
    utils::flush.console()
    object <- update(object, Hess=TRUE, start=object$coefficients)
  }
  dn <- names(object$coefficients)
  H <- object$Hessian
  ## To handle NaNs in the Hessian resulting from parameter
  ## unidentifiability:
  if(any(His.na <- !is.finite(H))) {
    H[His.na] <- 0
    VCOV <- ginv(H)
    VCOV[His.na] <- NaN
  }
  else
    VCOV <- ginv(H)
  structure(VCOV, dimnames = list(dn, dn))
}

summary.clm2 <- function(object, digits = max(3, .Options$digits - 3),
                        correlation = FALSE, ...)
{
  if(is.null(object$Hessian))
    stop("Model needs to be fitted with Hess = TRUE")
  coef <- matrix(0, object$edf, 4,
                 dimnames = list(names(object$coefficients),
                   c("Estimate", "Std. Error", "z value", "Pr(>|z|)")))
  coef[, 1] <- object$coefficients
  vc <- try(vcov(object), silent = TRUE)
  if(inherits(vc, "try-error")) {
    warning("Variance-covariance matrix of the parameters is not defined")
    coef[, 2:4] <- NaN
    if(correlation) warning("Correlation matrix is unavailable")
    object$condHess <- NaN
  }
  else {
    coef[, 2] <- sd <- sqrt(diag(vc))
    ## Cond is Inf if Hessian contains NaNs:
    object$condHess <-
      if(any(is.na(object$Hessian))) Inf
      else with(eigen(object$Hessian, only.values = TRUE),
                abs(max(values) / min(values)))
    coef[, 3] <- coef[, 1]/coef[, 2]
    coef[, 4] <- 2*pnorm(abs(coef[, 3]), lower.tail=FALSE)
    if(correlation)
        object$correlation <- (vc/sd)/rep(sd, rep(object$edf, object$edf))
  }
  object$coefficients <- coef
  object$digits <- digits
    class(object) <- "summary.clm2"
  object
}

print.summary.clm2 <- function(x, digits = x$digits, signif.stars =
                              getOption("show.signif.stars"), ...)
{
    if(!is.null(cl <- x$call)) {
        cat("Call:\n")
        dput(cl, control=NULL)
    }
    coef <- format(round(x$coefficients, digits=digits))
    coef[,4] <- format.pval(x$coefficients[, 4])
    p <- length(x$beta); nxi <- length(x$xi)
    k <- length(x$zeta); u <- x$estimLambda
    if(p > 0) {
        cat("\nLocation coefficients:\n")
        print(coef[nxi + 1:p, , drop=FALSE],
              quote = FALSE, ...)
    } else {
        cat("\nNo location coefficients\n")
    }
    if(k > 0) {
      cat("\nScale coefficients:\n")
      print(coef[(nxi+p+1):(nxi+p+k), , drop=FALSE],
            quote = FALSE, ...)
    } else {
      cat("\nNo scale coefficients\n")
    }
    if(x$estimLambda > 0) {
        cat("\nLink coefficients:\n")
        print(coef[(nxi+p+k+1):(nxi+p+k+u), , drop=FALSE],
              quote = FALSE, ...)
    }
    if(nxi > 0) {
        cat("\nThreshold coefficients:\n")
        print(coef[seq_len(nxi), -4, drop=FALSE], quote = FALSE, ...)
    }

    cat("\nlog-likelihood:", format(x$logLik, nsmall=2), "\n")
    cat("AIC:", format(-2*x$logLik + 2*x$edf, nsmall=2), "\n")
    cat("Condition number of Hessian:", format(x$condHess, nsmall=2), "\n")
    if(nzchar(mess <- naprint(x$na.action))) cat("(", mess, ")\n", sep="")
    if(!is.null(correl <- x$correlation)) {
        cat("\nCorrelation of Coefficients:\n")
        ll <- lower.tri(correl)
        correl[ll] <- format(round(correl[ll], digits))
        correl[!ll] <- ""
        print(correl[-1, -ncol(correl)], quote = FALSE, ...)
    }
    invisible(x)
}

anova.clm2 <- function (object, ..., test = c("Chisq", "none"))
{
  test <- match.arg(test)
  dots <- list(...)
  if (length(dots) == 0)
    stop('anova is not implemented for a single "clm2" object')
  mlist <- list(object, ...)
  nt <- length(mlist)
  dflis <- sapply(mlist, function(x) x$df.residual)
  s <- order(dflis, decreasing = TRUE)
  mlist <- mlist[s]
  if (any(!sapply(mlist, inherits, "clm2")))
    stop('not all objects are of class "clm2"')
  ns <- sapply(mlist, function(x) length(x$fitted.values))
  if(any(ns != ns[1]))
    stop("models were not all fitted to the same size of dataset")
  rsp <- unique(sapply(mlist, function(x) {
                       tmp <- attr(x$location, "terms")
                       class(tmp) <- "formula"
                       paste(tmp[2]) } ))
  mds <- sapply(mlist, function(x) {
      tmp1 <- attr(x$location, "terms")
      class(tmp1) <- "formula"
      if(!is.null(x$scale)) {
          tmp2 <- attr(x$scale, "terms")
          class(tmp2) <- "formula"
          tmp2 <- tmp2[2]
      }
      else tmp2 <- ""
      if(!is.null(x$nominal)) {
          tmp3 <- attr(x$nominal, "terms")
          class(tmp3) <- "formula"
          tmp3 <- tmp3[2]
      }
      else tmp3 <- ""
      paste(tmp1[3], "|", tmp2, "|", tmp3) } )
  dfs <- dflis[s]
  lls <- sapply(mlist, function(x) -2*x$logLik)
  tss <- c("", paste(1:(nt - 1), 2:nt, sep = " vs "))
  df <- c(NA, -diff(dfs))
  x2 <- c(NA, -diff(lls))
  pr <- c(NA, 1 - pchisq(x2[-1], df[-1]))
  out <- data.frame(Model = mds, Resid.df = dfs, '-2logLik' = lls,
                    Test = tss, Df = df, LRtest = x2, Prob = pr)
  names(out) <- c("Model", "Resid. df", "-2logLik", "Test",
                  "   Df", "LR stat.", "Pr(Chi)")
  if (test == "none") out <- out[, 1:6]
  class(out) <- c("Anova", "data.frame")
  attr(out, "heading") <-
    c("Likelihood ratio tests of cumulative link models\n",
      paste("Response:", rsp))
  out
}

predict.clm2 <- function(object, newdata, ...)
{
    if(!inherits(object, "clm2")) stop("not a \"clm2\" object")
    if(missing(newdata)) pr <- object$fitted
    else {
        newdata <- as.data.frame(newdata)
        Terms <- attr(object$location, "terms")
        m <- model.frame(Terms, newdata, na.action = function(x) x)#,
        if (!is.null(cl <- attr(Terms, "dataClasses")))
            .checkMFClasses(cl, m)
        X <- model.matrix(Terms, m, contrasts = object$contrasts)
        xint <- match("(Intercept)", colnames(X), nomatch=0)
        if(xint > 0) X <- X[, -xint, drop=FALSE]
        n <- nrow(X)
        y <- m[,names(cl)[attr(Terms, "response")]]
        if(length(object$zeta) > 0) {
            Terms <- attr(object$scale, "terms")
            m <- model.frame(Terms, newdata, na.action = function(x) x)#,
            if (!is.null(cl <- attr(Terms, "dataClasses")))
                .checkMFClasses(cl, m)
            Z <- model.matrix(Terms, m, contrasts = object$contrasts)
            zint <- match("(Intercept)", colnames(Z), nomatch=0)
            if(zint > 0) Z <- Z[, -zint, drop=FALSE]
        }
        if(!is.null(object$nominal)) {
            Terms <- attr(object$nominal, "terms")
            m <- model.frame(Terms, newdata, na.action = function(x) x)#,
            if (!is.null(cl <- attr(Terms, "dataClasses")))
                .checkMFClasses(cl, m)
            XX <- model.matrix(Terms, m, contrasts = object$contrasts)
            namC <- colnames(XX)
        }
        B2 <- 1 * (col(matrix(0, n, nlevels(y))) == unclass(y))
        o1 <- c(100 * B2[, nlevels(y)])
        o2 <- c(-100 * B2[,1])
        B1 <- B2[,-nlevels(y), drop=FALSE]
        B2 <- B2[,-1, drop=FALSE]
        locationPar <- c(t(object$Theta))
        if(!is.null(object$nominal)) {
          ncolXX <- ncol(XX)
          LL1 <- lapply(1:ncolXX, function(x) B1 * XX[,x])
          B1 <- do.call(cbind, LL1)
          LL2 <- lapply(1:ncolXX, function(x) B2 * XX[,x])
          B2 <- do.call(cbind, LL2)
        }
        if(ncol(X) > 0) {
            B1 <- cbind(B1, -X)
            B2 <- cbind(B2, -X)
            locationPar <- c(locationPar, object$beta)
        }
        pfun <- switch(object$link,
                       logistic = plogis,
                       probit = pnorm,
                       cloglog = function(x) pgumbel(x, max=FALSE),
                       ## cloglog = pgumbel,
                       cauchit = pcauchy,
                       loglog = pgumbel,
                       "Aranda-Ordaz" = function(x, lambda) pAO(x, lambda),
                       "log-gamma" = function(x, lambda) plgamma(x, lambda))
        sigma <- 1
        if(length(object$zeta) > 0)
            sigma <- sigma * exp(drop(Z %*% object$zeta))
        eta1 <- (drop(B1 %*% locationPar) + o1) / sigma
        eta2 <- (drop(B2 %*% locationPar) + o2) / sigma
        if(object$link %in% c("Aranda-Ordaz", "log-gamma"))
          pr <- pfun(eta1, object$lambda) - pfun(eta2, object$lambda)
        else
          pr <- pfun(eta1) - pfun(eta2)
    }
    if(missing(newdata) && !is.null(object$na.action))
        pr <- napredict(object$na.action, pr)
    as.vector(pr)
}

profile.clm2 <- function(fitted, whichL = seq_len(p),
                        whichS = seq_len(k), lambda = TRUE, alpha = 0.01,
                        maxSteps = 50, delta = LrootMax/10, trace = 0,
                        stepWarn = 8, ...)
{
    rho <- update(fitted, doFit=FALSE)
    if(rho$estimLambda > 0 & rho$link == "Aranda-Ordaz")
        rho$limitLow <- c(rep(-Inf, length(rho$par)-2), 1e-5)
    nxi <- rho$nxi; k <- rho$k; p <- rho$p; X <- rho$X; Z <- rho$Z
    B1 <- rho$B1; B2 <- rho$B2
    sO <- rho$expSoffset; O1 <- rho$o1; O2 <- rho$o2
    beta0 <- with(fitted, coefficients[nxi + seq_len(p+k)])
    Lnames <- names(beta0[seq_len(p)])
    Snames <- names(beta0[p + seq_len(k)])
    Pnames <- c(Lnames, Snames)
    if(is.character(whichL)) whichL <- match(whichL, Lnames)
    if(is.character(whichS)) whichS <- match(whichS, Snames)
    nL <- length(whichL); nS <- length(whichS)
    summ <- summary(fitted)
    std.err <- summ$coefficients[nxi + seq_len(p+k), "Std. Error"]
    if(trace < 0) rho$ctrl$trace <- trace <- 1
    origLogLik <- fitted$logLik
    LrootMax <- qnorm(1 - alpha/2)
    prof <- vector("list", length = nL + nS)
    names(prof) <-
        c(paste("loc", Lnames[whichL], sep=".")[seq_len(nL)],
          paste("scale", Snames[whichS], sep=".")[seq_len(nS)])
    for(where in c("loc", "scale")[c(nL>0, nS>0)]) {
        if(where == "loc") {
            rho$p <- max(0, p - 1)
            which <- whichL }
        if(where == "scale") {
            which <- whichS
            rho$o1 <- O1
            rho$o2 <- O2
            rho$p <- p
            rho$k <- max(0, k - 1)
            rho$X <- X
            if(rho$nxi > 0) {
                rho$B1 <- B1
                rho$B2 <- B2 } }
        for(i in which) {
            if(where == "loc") {
                rho$X <- X[, -i, drop=FALSE]
                if(nxi > 0) {
                    rho$B1 <- B1[, -(nxi+i), drop=FALSE]
                    rho$B2 <- B2[, -(nxi+i), drop=FALSE] } }
            else {
                rho$Z <- Z[, -i, drop=FALSE]
                i <- i + p }
            res.i <- c(0, beta0[i])
            for(sgn in c(-1, 1)) {
                if(trace) {
                    message("\nParameter: ", where, ".", c(Lnames, Snames)[i],
                            c(" down", " up")[(sgn + 1)/2 + 1])
                    utils::flush.console() }
                rho$par <- fitted$coefficients[-(nxi+i)]
                step <- 0; Lroot <- 0
                while((step <- step + 1) < maxSteps && abs(Lroot) < LrootMax) {
                    beta.i <- beta0[i] + sgn * step * delta * std.err[i]
                    if(where=="loc") {
                        rho$o1 <- O1 - X[, i] * beta.i
                        rho$o2 <- O2 - X[, i] * beta.i }
                    else rho$expSoffset <- exp(sO + Z[, (i - p)] * beta.i)
                    fitCLM(rho)
                    Lroot <- sgn * sqrt(2*(-rho$logLik + origLogLik))
                    res.i <- rbind(res.i, c(Lroot, beta.i)) }
                if(step - 1 < stepWarn)
                    warning("profile may be unreliable for ",
                            where, ".", c(Lnames, Snames)[i],
                            " because only ", step - 1, "\n  steps were taken ",
                            c("downwards", "upwards")[(sgn + 1)/2 + 1])
            }
            rownames(res.i) <- NULL
            prof[[paste(where, c(Lnames, Snames)[i], sep=".")]] <- # -p+nL
                structure(data.frame(res.i[order(res.i[,1]),]),
                          names = c("Lroot",  c(Lnames, Snames)[i]))
            if(!all(diff(prof[[length(prof)]][,2]) > 0))
                warning("likelihood is not monotonically decreasing from maximum,\n",
                        "  so profile may be unreliable for ",
                        names(prof)[length(prof)])
        }
    }
    if(lambda & rho$nlambda)
        prof$lambda <- profileLambda(fitted, trace = trace, ...)
    val <- structure(prof, original.fit = fitted, summary = summ)
    class(val) <- c("profile.clm2", "profile")
    val
}

profileLambda <-
    function(fitted, link = fitted$link, range,
             nSteps = 20, trace = 0, ...)
{
    if(link == "log-gamma" & missing(range))
        range <- c(-4, 4)
    if(link == "Aranda-Ordaz" & missing(range))
        range <- c(1e-4, 4)
    if(!link %in% c("log-gamma", "Aranda-Ordaz"))
        stop("link needs to be 'log-gamma' or 'Aranda-Ordaz';", link,
             "not recognized")
    if(link == "Aranda-Ordaz" & min(range) <= 0)
        stop("range should be > 0 for the 'Aranda-Ordaz' link")
    if(fitted$estimLambda == 0)
        fitted <- update(fitted, Hess = FALSE, link = link,
                          lambda = NULL)
    MLogLik <- fitted$logLik
    MLlambda <- fitted$lambda
    logLik <- numeric(nSteps)
    rho <- update(fitted, Hess = FALSE, link = link,
                  lambda = min(range))
    logLik[1] <- rho$logLik
    rho <- update(rho, doFit = FALSE)
    lambdaSeq <- seq(min(range), max(range), length.out = nSteps)
    if(trace)  message("\nNow profiling lambda with ", nSteps - 1,
                       " steps: i =")
    for(i in 2:nSteps){
        if(trace) cat(i-1, " ")
        rho$lambda <- lambdaSeq[i]
        fitCLM(rho)
        logLik[i] <- rho$logLik
    }
    if(trace) cat("\n\n")
    if(any(logLik > fitted$logLik))
        warning("Profiling found a better optimum,",
                "  so original fit had not converged")

    sgn <- 2*(lambdaSeq > MLlambda) -1
    Lroot <- sgn * sqrt(2) * sqrt(-logLik + MLogLik)
    res <- data.frame("Lroot" = c(0, Lroot),
                      "lambda" = c(MLlambda, lambdaSeq))
    res <- res[order(res[,1]),]
    if(!all(diff(res[,2]) > 0))
        warning("likelihood is not monotonically decreasing from maximum,\n",
                "  so profile may be unreliable for lambda")
    res
}

confint.clm2 <-
    function(object, parm, level = 0.95,  whichL = seq_len(p),
             whichS = seq_len(k), lambda = TRUE, trace = 0, ...)
{
    p <- length(object$beta); k <- length(object$zeta)
    if(trace) {
        message("Waiting for profiling to be done...")
        utils::flush.console() }
    object <- profile(object, whichL = whichL, whichS = whichS,
                      alpha = (1. - level)/4., lambda = lambda,
                      trace = trace)
    confint(object, level=level, ...)
}

confint.profile.clm2 <-
  function(object, parm = seq_along(Pnames), level = 0.95, ...)
{
    of <- attr(object, "original.fit")
    Pnames <- names(object)
    if(is.character(parm))  parm <- match(parm, Pnames, nomatch = 0)
    a <- (1-level)/2
    a <- c(a, 1-a)
    pct <- paste(round(100*a, 1), "%")
    ci <- array(NA, dim = c(length(parm), 2),
                dimnames = list(Pnames[parm], pct))
    cutoff <- qnorm(a)
    for(pm in parm) {
        pro <- object[[ Pnames[pm] ]]
        sp <- spline(x = pro[, 2], y = pro[, 1])
        ci[Pnames[pm], ] <- approx(sp$y, sp$x, xout = cutoff)$y
    }
    ci
}

plot.profile.clm2 <-
    function(x, parm = seq_along(Pnames), level = c(0.95, 0.99),
             Log = FALSE, relative = TRUE, fig = TRUE, n = 1e3, ...,
             ylim = NULL)
### Should this function have a 'root' argument to display the
### likelihood root statistic (approximate straight line)?
{
    Pnames <- names(x)
    ML <- attr(x, "original.fit")$logLik
    for(pm in parm) {
        lim <- sapply(level, function(x)
                      exp(-qchisq(x, df=1)/2) )
        pro <- x[[ Pnames[pm] ]]
        sp <- spline(x = pro[, 2], y = pro[, 1], n=n)
        sp$y <- -sp$y^2/2
        if(relative & !Log) {
            sp$y <- exp(sp$y)
            ylab <- "Relative likelihood"
            dots <- list(...)
            if(missing(ylim))
                ylim <- c(0, 1)
        }
        if(relative & Log) {
            ylab <- "Relative log-likelihood"
            lim <- log(lim)
        }
        if(!relative & Log) {
            sp$y <- sp$y + ML
            ylab <- "Log-likelihood"
            lim <- ML + log(lim)
        }
        if(!relative & !Log) {
            stop("Not supported: at least one of 'Log' and 'relative' ",
                 "have to be TRUE")
            sp$y <- exp(sp$y + ML)
            ylab <- "Likelihood"
            lim <- exp(ML + log(lim))
        }
        x[[ Pnames[pm] ]] <- sp
        if(fig) {
            plot(sp$x, sp$y, type = "l", ylim = ylim,
                 xlab = Pnames[pm], ylab = ylab, ...)
            abline(h = lim)
        }
    }
    attr(x, "limits") <- lim
    invisible(x)
}

logLik.clm2 <- function(object, ...)
    structure(object$logLik, df = object$edf, class = "logLik")

extractAIC.clm2 <- function(fit, scale = 0, k = 2, ...)
{
    edf <- fit$edf
    c(edf, -2*fit$logLik + k * edf)
}

update.clm2 <-
    function(object, formula., location, scale, nominal, ..., evaluate = TRUE)
### This method makes it possible to use the update.formula features
### for location and scale formulas in clm2 objects. This includes the
### possibility of using e.g.
### update(obj, loc = ~ . - var1, sca = ~ . + var2)
{
    call <- object$call
    if (is.null(call))
        stop("need an object with call component")
    extras <- match.call(expand.dots = FALSE)$...
    if (!missing(location))
        call$location <-
            update.formula(formula(attr(object$location, "terms")),
                                   location)
    if (!missing(scale))
        call$scale <-
            if(!is.null(object$scale))
                update.formula(formula(attr(object$scale, "terms")), scale)
            else
                scale

    if (!missing(nominal))
        call$nominal <-
            if(!is.null(object$nominal))
                update.formula(formula(attr(object$nominal, "terms")), nominal)
            else
                nominal

    if (length(extras)) {
        existing <- !is.na(match(names(extras), names(call)))
        for (a in names(extras)[existing]) call[[a]] <- extras[[a]]
        if (any(!existing)) {
            call <- c(as.list(call), extras[!existing])
            call <- as.call(call)
        }
    }
    if (evaluate)
        eval(call, parent.frame())
    else call
}

dropterm.clm2 <-
  function(object, scope, scale = 0, test = c("none", "Chisq"),
           k = 2, sorted = FALSE, trace = FALSE,
           which = c("location", "scale"), ...)
### Most of this is lifted from MASS::dropterm.default, but adapted to
### the two formulas (location and scale) in the model.
{
    which <- match.arg(which)
    Terms <-
        if(which == "location") attr(object$location, "terms")
        else attr(object$scale, "terms")
    tl <- attr(Terms, "term.labels")
    if(missing(scope)) scope <- drop.scope(Terms)
    else {
        if(!is.character(scope))
            scope <- attr(terms(update.formula(Terms, scope)),
                          "term.labels")
        if(!all(match(scope, tl, FALSE)))
            stop("scope is not a subset of term labels")
    }
    ns <- length(scope)
    ans <- matrix(nrow = ns + 1, ncol = 2,
                  dimnames =  list(c("<none>", scope), c("df", "AIC")))
    ans[1,  ] <- extractAIC(object, scale, k = k, ...)
    n0 <- length(object$fitted)
    for(i in seq(ns)) {
        tt <- scope[i]
        if(trace) {
	    message("trying -", tt)
	    utils::flush.console()
	}
        Call <- as.list(object$call)
        Call[[which]] <-
            update.formula(Terms, as.formula(paste("~ . -", tt)))
        nfit <- eval.parent(as.call(Call))
	ans[i+1, ] <- extractAIC(nfit, scale, k = k, ...)
        if(length(nfit$fitted) != n0)
            stop("number of rows in use has changed: remove missing values?")
    }
    dfs <- ans[1,1] - ans[,1]
    dfs[1] <- NA
    aod <- data.frame(Df = dfs, AIC = ans[,2])
    o <- if(sorted) order(aod$AIC) else seq_along(aod$AIC)
    test <- match.arg(test)
    if(test == "Chisq") {
        dev <- ans[, 2] - k*ans[, 1]
        dev <- dev - dev[1] ; dev[1] <- NA
        nas <- !is.na(dev)
        P <- dev
        P[nas] <- pchisq(dev[nas], dfs[nas], lower.tail = FALSE)
        aod[, c("LRT", "Pr(Chi)")] <- list(dev, P)
    }
    aod <- aod[o, ]
    Call <- as.list(object$call)
    Call <- Call[names(Call) %in% c("location", "scale")]
    head <- c("Single term deletions", "\nModel:",
              paste(names(Call), ":",  Call))
    if(scale > 0)
        head <- c(head, paste("\nscale: ", format(scale), "\n"))
    class(aod) <- c("anova", "data.frame")
    attr(aod, "heading") <- head
    aod
}

addterm.clm2 <-
    function(object, scope, scale = 0, test = c("none", "Chisq"),
             k = 2, sorted = FALSE, trace = FALSE,
             which = c("location", "scale"), ...)
### Most of this is lifted from MASS::addterm.default, but adapted to
### the two formulas (location and scale) in the model.
{
    which <- match.arg(which)
    if (which == "location")
        Terms <- attr(object$location, "terms")
    else if(!is.null(object$scale))
        Terms <- attr(object$scale, "terms")
    else
        Terms <- as.formula(" ~ 1")
    if(missing(scope) || is.null(scope)) stop("no terms in scope")
    if(!is.character(scope))
        scope <- add.scope(Terms, update.formula(Terms, scope))
    if(!length(scope))
        stop("no terms in scope for adding to object")
    ns <- length(scope)
    ans <- matrix(nrow = ns + 1, ncol = 2,
                  dimnames = list(c("<none>", scope), c("df", "AIC")))
    ans[1,  ] <- extractAIC(object, scale, k = k, ...)
    n0 <- length(object$fitted)
    for(i in seq(ns)) {
        tt <- scope[i]
        if(trace) {
	    message("trying +", tt)
	    utils::flush.console()
        }
        Call <- as.list(object$call)
        Call[[which]] <-
            update.formula(Terms, as.formula(paste("~ . +", tt)))
        nfit <- eval.parent(as.call(Call))
	ans[i+1, ] <- extractAIC(nfit, scale, k = k, ...)
        if(length(nfit$fitted) != n0)
            stop("number of rows in use has changed: remove missing values?")
    }
    dfs <- ans[,1] - ans[1,1]
    dfs[1] <- NA
    aod <- data.frame(Df = dfs, AIC = ans[,2])
    o <- if(sorted) order(aod$AIC) else seq_along(aod$AIC)
    test <- match.arg(test)
    if(test == "Chisq") {
	dev <- ans[,2] - k*ans[, 1]
	dev <- dev[1] - dev; dev[1] <- NA
	nas <- !is.na(dev)
	P <- dev
	P[nas] <- pchisq(dev[nas], dfs[nas], lower.tail=FALSE)
	aod[, c("LRT", "Pr(Chi)")] <- list(dev, P)
    }
    aod <- aod[o, ]
    Call <- as.list(object$call)
    Call <- Call[names(Call) %in% c("location", "scale")]
    head <- c("Single term additions", "\nModel:",
              paste(names(Call), ":",  Call))
    if(scale > 0)
        head <- c(head, paste("\nscale: ", format(scale), "\n"))
    class(aod) <- c("anova", "data.frame")
    attr(aod, "heading") <- head
    aod
}

## addterm <- function(object, ...) UseMethod("addterm")
## dropterm <- function(object, ...) UseMethod("dropterm")

##################################################################
## Additional utility functions:

grad.lambda <- function(rho, lambda, link, delta = 1e-6) {
    ll <- lambda + c(-delta, delta)
    if(link == "Aranda-Ordaz") ll[ll < 0] <- 0
    par <- rho$par
    f <- sapply(ll, function(x) getNll(rho, c(par[-length(par)], x)))
    rho$lambda <- lambda
    rho$par <- par
    diff(f) /  diff(ll)
}

TraceR <- function(iter, stepFactor, val, maxGrad, par, first=FALSE) {
    t1 <- sprintf(" %3d:     %.2e:   %.3f:   %1.3e:  ",
                  iter, stepFactor, val, maxGrad)
    t2 <- formatC(par)
    if(first)
        cat("iter:  step factor:      Value:   max|grad|:   Parameters:\n")
    cat(t1, t2, "\n")
}

print.Anova <- function (x, ...)
## Lifted from package MASS:
{
    heading <- attr(x, "heading")
    if (!is.null(heading))
        cat(heading, sep = "\n")
    attr(x, "heading") <- NULL
    res <- format.data.frame(x, ...)
    nas <- is.na(x)
    res[] <- sapply(seq_len(ncol(res)), function(i) {
        x <- as.character(res[[i]])
        x[nas[, i]] <- ""
        x
    })
    print.data.frame(res)
    invisible(x)
}

fixed <- function(theta, eps = 1e-3) {
    res <- vector("list")
    res$name <- "fixed"
    if(!missing(theta) && length(theta) > 1) {
        if(length(theta) < 3)
            stop("'length(theta) = ", length(theta),
                 ", but has to be 1 or >= 3")
        res$eps <- NULL
        res$theta <- theta
        res$getTheta <- function(y, theta, eps) theta
    }
    else if(!missing(theta) && length(theta) == 1) {
        if(as.integer(theta) < 3)
            stop("'as.integer(theta)' was ", as.integer(theta),
                 ", but has to be > 2")
        res$eps <- NULL
        res$theta <- theta
        res$getTheta <- function(y, theta, eps) {
            eps <- diff(range(y)) / (theta - 1)
            seq(min(y) - eps/2, max(y) + eps/2, len = theta + 1)
        }
    }
    else if(missing(theta) && length(eps) == 1) {
        res$eps <- eps
        res$theta <- NULL
        res$getTheta <- function(y, theta, eps) {
            J <- diff(range(y))/eps + 1
            seq(min(y) - eps/2, max(y) + eps/2, len = J)
        }
    }
    else
        stop("inappropriate arguments")
    class(res) <- "threshold"
    res
}

makeThresholds2 <- function(rho, threshold, ...) {
    if(threshold == "flexible") {
        rho$tJac <- diag(rho$ntheta)
        rho$nalpha <- rho$ntheta
        rho$alphaNames <-
            paste(rho$lev[-length(rho$lev)], rho$lev[-1], sep="|")
    }
    if(threshold == "symmetric") {
        if(!rho$ntheta >=2)
            stop("symmetric thresholds are only meaningful for responses with 3 or more levels")
        if(rho$ntheta %% 2) { ## ntheta is odd
            rho$nalpha <- (rho$ntheta + 1)/2 ## No. threshold parameters
            rho$tJac <- t(cbind(diag(-1, rho$nalpha)[rho$nalpha:1, 1:(rho$nalpha-1)],
                                diag(rho$nalpha)))
            rho$tJac[,1] <- 1
            rho$alphaNames <-
                c("central", paste("spacing.", 1:(rho$nalpha-1), sep=""))
        }
        else { ## ntheta is even
            rho$nalpha <- (rho$ntheta + 2)/2
            rho$tJac <- cbind(rep(1:0, each=rho$ntheta/2),
                              rbind(diag(-1, rho$ntheta/2)[(rho$ntheta/2):1,],
                                    diag(rho$ntheta/2)))
            rho$tJac[,2] <- rep(0:1, each=rho$ntheta/2)
            rho$alphaNames <- c("central.1", "central.2",
                                paste("spacing.", 1:(rho$nalpha-2), sep=""))
        }
    }
    if(threshold == "equidistant") {
        if(!rho$ntheta >=2)
            stop("symmetric thresholds are only meaningful for responses with 3 or more levels")
        rho$tJac <- cbind(1, 0:(rho$ntheta-1))
        rho$nalpha <- 2
        rho$alphaNames <- c("threshold.1", "spacing")
    }
}

Try the ordinal package in your browser

Any scripts or data that you put into this service are public.

ordinal documentation built on Sept. 11, 2024, 7:44 p.m.