R/distSeq.R

Defines functions unique.dist read.nexus.dist readPhylip readDist write.nexus.dist writeDist dist.logDet dist.ml dist.hamming

Documented in dist.hamming dist.logDet dist.ml readDist read.nexus.dist unique.dist writeDist write.nexus.dist

#' Pairwise Distances from Sequences
#'
#' \code{dist.hamming}, \code{dist.ml} and \code{dist.logDet} compute pairwise
#' distances for an object of class \code{phyDat}.  \code{dist.ml} uses DNA /
#' AA sequences to compute distances under different substitution models.
#'
#' So far 17 amino acid models are supported ("WAG", "JTT", "LG", "Dayhoff",
#' "cpREV", "mtmam", "mtArt", "MtZoa", "mtREV24", "VT","RtREV", "HIVw", "HIVb",
#' "FLU", "Blosum62", "Dayhoff_DCMut" and "JTT_DCMut") and additional rate
#' matrices and frequencies can be supplied.
#'
#' The "F81" model uses empirical base frequencies, the "JC69" equal base
#' frequencies. This is even the case if the data are not nucleotides.
#'
#' @param x An object of class \code{phyDat}
#' @param ratio Compute uncorrected ('p') distance or character difference.
#' @param model One of "JC69", "F81" or one of 17 amino acid models see
#' details.
#' @param exclude One of "none", "all", "pairwise" indicating whether to delete
#' the sites with missing data (or ambiguous states). The default is handle
#' missing data as in pml.
#' @param bf A vector of base frequencies.
#' @param Q A vector containing the lower triangular part of the rate matrix.
#' @param k Number of intervals of the discrete gamma distribution.
#' @param shape Shape parameter of the gamma distribution.
#' @param \dots Further arguments passed to or from other methods.
#' @return an object of class \code{dist}
#' @author Klaus Schliep \email{klaus.schliep@@gmail.com}
#' @seealso For more distance methods for nucleotide data see
#' \code{\link[ape]{dist.dna}} and \code{\link{dist.p}} for pairwise
#' polymorphism p-distances. \code{\link{writeDist}} for export and import
#' distances.
#' @references Lockhart, P. J., Steel, M. A., Hendy, M. D. and Penny, D. (1994)
#' Recovering evolutionary trees under a more realistic model of sequence
#' evolution. \emph{Molecular Biology and Evolution}, \bold{11}, 605--602.
#'
#' Jukes TH and Cantor CR (1969). \emph{Evolution of Protein Molecules}. New
#' York: Academic Press. 21--132.
#'
#' McGuire, G., Prentice, M. J. and Wright, F. (1999). Improved error bounds for
#' genetic distances from DNA sequences. \emph{Biometrics}, \bold{55},
#' 1064–1070.
#' @keywords cluster
#' @examples
#'
#' data(Laurasiatherian)
#' dm1 <- dist.hamming(Laurasiatherian)
#' tree1 <- NJ(dm1)
#' dm2 <- dist.logDet(Laurasiatherian)
#' tree2 <- NJ(dm2)
#' treedist(tree1,tree2)
#' # JC model
#' dm3 <- dist.ml(Laurasiatherian)
#' tree3 <- NJ(dm3)
#' treedist(tree1,tree3)
#' # F81 + Gamma
#' dm4 <- dist.ml(Laurasiatherian, model="F81", k=4, shape=.4)
#' tree4 <- NJ(dm4)
#' treedist(tree1,tree4)
#' treedist(tree3,tree4)
#'
#' @rdname dist.hamming
#' @export
dist.hamming <- function(x, ratio = TRUE, exclude = "none"){
  if(inherits(x, "DNAbin") | inherits(x, "AAbin")) x <- as.phyDat(x)
  if (!inherits(x, "phyDat")) stop("x must be of class phyDat")
  l <- length(x)

  contrast <- attr(x, "contrast")
  nc <- as.integer(attr(x, "nc"))
  con <- rowSums(contrast > 0) < 2
  if (exclude == "all") x <- removeAmbiguousSites(x)
  weight <- attr(x, "weight")
  d <- numeric( (l * (l - 1)) / 2)
  if (exclude == "pairwise") {
    k <- 1
    W <- numeric(l * (l - 1) / 2)
    for (i in 1:(l - 1)) {
      tmp <- con[x[[i]]]
      for (j in (i + 1):l) {
        W[k] <- sum(weight[tmp & con[ x[[j]] ] ])
        k <- k + 1
      }
    }
  }
  if (exclude == "pairwise"){
    contrast[!con, ] <- 1L
    attr(x, "contrast") <- contrast
  }
  f <- init_fitch(x, FALSE, TRUE, m=1L)
  d <- f$hamming_dist()
  if (ratio) {
    if (exclude == "pairwise") d <- d / W
    else d <- d / sum(weight)
  }
  attr(d, "Size") <- l
  if (is.list(x))
    attr(d, "Labels") <- names(x)
  else attr(d, "Labels") <- colnames(x)
  attr(d, "Diag") <- FALSE
  attr(d, "Upper") <- FALSE
  attr(d, "call") <- match.call()
  attr(d, "method") <- "hamming"
  class(d) <- "dist"
  return(d)
}


#' @rdname dist.hamming
#' @export
dist.ml <- function(x, model = "JC69", exclude = "none", bf = NULL, Q = NULL,
                    k = 1L, shape = 1, ...){
  if(inherits(x, "DNAbin") | inherits(x, "AAbin")) x <- as.phyDat(x)
  if (!inherits(x, "phyDat")) stop("x must be of class phyDat")
  l <- length(x)
  d <- numeric((l * (l - 1)) / 2)
  v <- numeric((l * (l - 1)) / 2)
  contrast <- attr(x, "contrast")
  con <- rowSums(contrast > 0) == 1

  if (exclude == "all" ) x <- removeAmbiguousSites(x)
  ambig_sites <- hasAmbiguousSites(x)

  model <- match.arg(model, c("JC69", "F81", .aamodels))

  unique_contrast <- grp_duplicated(contrast)
  if(exclude != "none"){
    pos_contrast <- rep(NA_integer_, length(unique_contrast))
    lu <- length(unique( unique_contrast[con]) )
    pos_contrast[unique( unique_contrast[con])] <- seq_len(lu)
    unique_contrast <- pos_contrast[unique_contrast]
    attr(unique_contrast, "nlevels") <- lu
  }
  nc <- as.integer(attr(x, "nc"))
  nr <- as.integer(attr(x, "nr"))

  if (!is.na(match(model, .aamodels)))
    getModelAA(model, bf = is.null(bf), Q = is.null(Q))
  if (is.null(bf) && model == "F81") bf <- baseFreq(x)
  if (is.null(bf))
    bf <- rep(1 / nc, nc)
  if (is.null(Q))
    Q <- rep(1, (nc - 1) * nc / 2L)
  bf <- as.double(bf)

  if( (model == "JC69"  || model == "F81") && !ambig_sites && k==1){
    d <- dist.hamming(x)
    E <- .75
    if(model == "F81") E <- 1 - sum(bf^2)
    dist_jc <- function(d) -E * log(1- d/E )
    var_jc <- function(d, n) d * (1-d) / (n * (1 - d / E)^2)
    n <- sum(attr(x, "weight"))
    attr(d, "variance") <- var_jc(d, n)
    d <- dist_jc(d)
    attr(d, "call") <- match.call()
    attr(d, "method") <- model
    return(d)
  }
  eig <- edQt(Q = Q, bf = bf)
  pos <- 1
  k <- as.integer(k)
  w <- as.double(w <- rep(1 / k, k))
  g <- as.double(discrete.gamma(shape, k))
  fun <- function(s) -(nc - 1) / nc * log(1 - nc / (nc - 1) * s)
  eps <- (nc - 1) / nc
  n <- as.integer(dim(contrast)[1]) # attr(unique_contrast, "nlevels")
  ind1 <- rep(1:n, n:1)
  ind2 <- unlist(lapply(n:1, function(x) seq_len(x) + n - x))
  li <- as.integer(length(ind1))
  weight <- as.double(attr(x, "weight"))
  ll.0 <- as.double(weight * 0)
  if (exclude == "pairwise") {
    index <- con[ind1] & con[ind2]
    index <- which(!index)
  }
  tmp <- (contrast %*% eig[[2]])[ind1, ] *
    (contrast %*% (t(eig[[3]]) * bf))[ind2, ]
  tmp2 <- vector("list", k)

  wshared <- which(rowSums(contrast[ind1, ] * contrast[ind2, ]) > 0)

  tmp2 <- vector("list", k)
  for (i in 1:(l - 1)) {
    for (j in (i + 1):l) {
      w0 <- .Call('PWI', as.integer(x[[i]]), as.integer(x[[j]]),
                  nr, n, weight, li)
      if (exclude == "pairwise") w0[index] <- 0.0
      ind <- w0 > 0
# more error checking
      sum_shared <- sum(w0[wshared])
      sum_w <- sum(w0)
      if(sum_w == 0){
        d[pos] <- NA_real_
        v[pos] <- NA_real_
      } else if(sum_shared == sum_w){
        d[pos] <- 0
        v[pos] <- NA_real_
      } else {
      #1 - (sum(w0[wshared]) / sum(w0))
      old.el <- 1 - sum_shared / sum_w
      if (old.el > eps)
        old.el <- 10
      else old.el <- fun(old.el)
      for (lk in 1:k) tmp2[[lk]] <- tmp[ind, , drop = FALSE]
      res <- .Call('FS5', eig, nc, as.double(old.el), w, g, unlist(tmp2),
        as.integer(k), as.integer(sum(ind)), w0[ind], ll.0, 1.0e-8)
      d[pos] <- res[1] # res[[1]]
      v[pos] <- res[2] # res[[2]]
      }
      pos <- pos + 1
    }
  }
  attr(d, "Size") <- l
  if (is.list(x))
    attr(d, "Labels") <- names(x)
  else attr(d, "Labels") <- colnames(x)
  attr(d, "Diag") <- FALSE
  attr(d, "Upper") <- FALSE
  attr(d, "call") <- match.call()
  attr(d, "variance") <- v
  attr(d, "method") <- model
  class(d) <- "dist"
  return(d)
}


#' @rdname dist.hamming
#' @export
dist.logDet <- function(x)
{
  if(inherits(x, "DNAbin") | inherits(x, "AAbin")) x <- as.phyDat(x)
  if (!inherits(x, "phyDat")) stop("x must be of class phyDat")
  weight <- attr(x, "weight")
  contrast <- attr(x, "contrast")
  r <- attr(x, "nc")
  l <- length(x)
  d <- numeric( (l * (l - 1)) / 2)
  k <- 1
  for (i in 1:(l - 1)) {
    Xi <- weight * contrast[x[[i]], , drop = FALSE]
    for (j in (i + 1):l) {
      tmp <- crossprod(Xi, contrast[x[[j]], , drop = FALSE])
      class(tmp) <- "matrix"
      z <- determinant.matrix(tmp, logarithm = TRUE)
      res <- z$sign * z$modulus
      if (is.nan(res)) {
        d[k] <- 10
      }
      else d[k] <- (-res + sum(log(rowSums(tmp) * colSums(tmp))) / 2) / r
      k <- k + 1
    }
  }
  attr(d, "Size") <- l
  if (is.list(x))
    attr(d, "Labels") <- names(x)
  else attr(d, "Labels") <- colnames(x)
  attr(d, "Diag") <- FALSE
  attr(d, "Upper") <- FALSE
  attr(d, "call") <- match.call()
  attr(d, "method") <- "logDet"
  class(d) <- "dist"
  return(d)
}




#' Writing and reading distances in phylip and nexus format
#'
#' \code{readDist}, \code{writeDist} and \code{write.nexus.dist} are useful to
#' exchange distance matrices with other phylogenetic programs.
#'
#'
#' @param x A \code{dist} object.
#' @param file A file name.
#' @param format file format, default is "phylip", only other option so far is
#' "nexus".
#' @param \dots Further arguments passed to or from other methods.
#' @param upper	logical value indicating whether the upper triangle of the
#' distance matrix should be printed.
#' @param diag	logical value indicating whether the diagonal of the distance
#' matrix should be printed.
#' @param digits passed to format inside of \code{write.nexus.dist}.
#' @param taxa logical. If TRUE a taxa block is added.
#' @param append logical. If TRUE the nexus blocks will be added to a file.
#' @return an object of class \code{dist}
#' @author Klaus Schliep \email{klaus.schliep@@gmail.com}
#' @seealso To compute distance matrices see \code{\link{dist.ml}}
#' \code{\link[ape]{dist.dna}} and \code{\link{dist.p}} for pairwise
#' polymorphism p-distances
#' @references Maddison, D. R., Swofford, D. L. and Maddison, W. P. (1997)
#' NEXUS: an extensible file format for systematic information.
#' \emph{Systematic Biology}, \bold{46}, 590--621.
#'
#' @keywords cluster
#' @examples
#'
#' data(yeast)
#' dm <- dist.ml(yeast)
#' writeDist(dm)
#' write.nexus.dist(dm)
#'
#' @rdname writeDist
#' @export writeDist
writeDist <- function(x, file = "", format = "phylip", ...) {
  format <- match.arg(format, c("phylip", "nexus"))
  if (format == "phylip") {
    x <- as.matrix(x)
    # maybe x <- format(x, digits = digits, justify = "none")
    cat(ncol(x), "\n", file = file)
    write.table(x, file, append = TRUE, quote = FALSE, col.names = FALSE)
  }
  else write.nexus.dist(x, file = file, ...)
}


#' @rdname writeDist
#' @export
write.nexus.dist <- function(x, file = "", append = FALSE, upper = FALSE,
                             diag = TRUE, digits = getOption("digits"),
                             taxa = !append) {
  if(!inherits(x, "dist")) x <- as.dist(x)
  taxa.labels <- attr(x, "Labels")
  ntaxa <- length(taxa.labels)

  m <- as.matrix(x)
  cf <- format(m, digits = digits, justify = "none")
  l <-  length(attr(x, "Labels"))
  if (upper) diag <- TRUE
  if (!upper) cf[row(cf) < col(cf)] <- ""
  if (!diag) cf[row(cf) == col(cf)] <- ""

  cf2 <- apply(cf, 1, "paste0", collapse = " ")
  cf2 <- paste(attr(x, "Labels"), cf2)
  cf2 <- trimws(cf2, "right")

  if (!append) cat("#NEXUS\n\n", file = file)

  if (taxa) {
    cat(paste("BEGIN TAXA;\n\tDIMENSIONS ntax=", ntaxa, ";\n",
      sep = ""), file = file, append = TRUE)
    cat("\tTAXLABELS", paste(taxa.labels, sep = " "), ";\nEND;\n\n",
      file = file, append = TRUE)
  }

  cat("BEGIN DISTANCES; \n", file = file, append = TRUE)
  if (upper) cat("\tFORMAT TRIANGLE = BOTH;\n", file = file, append = TRUE)
  else cat("\tFORMAT TRIANGLE = LOWER;\n", file = file, append = TRUE)
  if (!diag) cat("\tFORMAT NODIAGONAL;\n", file = file, append = TRUE)
  cat("\tMatrix \n", file = file, append = TRUE)
  for (i in 1:l) cat("\t", cf2[i], "\n", sep = "", file = file, append = TRUE)
  cat("\t;\nEND; \n", file = file, append = TRUE)
}


#' @rdname writeDist
#' @export
readDist <- function(file, format="phylip") {
  format <- match.arg(format, c("phylip", "nexus"))
  if(format=="phylip") return(readPhylip(file))
  else return(read.nexus.dist(file))
}


readPhylip <- function(file, skip = 1, ...) {
  tmp <- read.table(file, stringsAsFactors = FALSE, skip=skip, ...)
  labels <- tmp[, 1]
  dm <- as.matrix(tmp[, -1])
  dimnames(dm) <- list(labels, labels)
  as.dist(dm)
}


#' @rdname writeDist
#' @export
read.nexus.dist <- function(file){
    X <- scan(file = file, what = "", sep = "\n", quiet = TRUE,
              strip.white = TRUE)
    semico <- grep(";", X)
    X <- gsub("\\[(.*?)\\]", "", X) # get rid of comments
    i1 <- grep("TAXLABELS", X, ignore.case = TRUE)
    taxlab <- ifelse(length(i1) > 0, TRUE, FALSE)
    if (taxlab) {
      end <- semico[semico >= i1][1]
      x <- X[(i1):end] # assumes not a 'new line' after "TRANSLATE"
      x <- gsub("TAXLABELS", "", x, ignore.case = TRUE)
      x <- unlist(strsplit(x, "[,; \t]"))
      x <- x[nzchar(x)]
      x <- gsub("['\"]", "", x)
    }
    distStart <- grep("DISTANCES;", X, ignore.case = TRUE)
    distEnd <- grep("END;", X, ignore.case = TRUE)
    distEnd <- distEnd[distEnd > distStart][1]

    matr <- grep("MATRIX", X, ignore.case = TRUE)
    format <- grep("FORMAT", X, ignore.case = TRUE)
    start <- matr[matr > distStart][1] + 1
    end <- semico[semico > start][1] - 1
    format <- format[(format > distStart) & (format < distEnd)]

    res <- vector("list", end - start + 1)
    weights <- numeric(end - start + 1)
    j <- 1

    flab <- FALSE
    if (length(format) > 0) {
      tmp <- X[format]
      tmp <- gsub("\\;", "", tmp)
      tmp <- gsub("\\s+", "", tmp)
      flab <- grepl("labels=left", tmp, ignore.case = TRUE)
    }
    tmp <- tempfile()
    writeLines(X[start:end], tmp)
    nTip <- end-start+1
    colnames <- c("label" , paste("V", seq_len(nTip)))
    dm <- readPhylip(tmp, fill=TRUE, skip=0, col.names = colnames,
                     colClasses=c("character", rep("numeric", nTip)))

    unlink(tmp)
    dm
}


#' @rdname writeDist
#' @param incomparables Not used so far.
#' @export
unique.dist <-  function(x, incomparables, ...) {
  y <- as.matrix(x)
  l <- nrow(y)
  z <- character(l)
  for (i in seq_len(l)) z[i] <- paste(round(y[i, ], 8), collapse = "_")
  if (any(duplicated(z))) {
    ind <- !duplicated(z)
    y <- y[ind, ind]
    if (is.matrix(x)) return(y)
    if (inherits(x, "dist")) {
      res <- as.dist(y, diag = attr(x, "Diag"), upper = attr(x, "Upper"))
      return(res)
    }
  }
  x
}

Try the phangorn package in your browser

Any scripts or data that you put into this service are public.

phangorn documentation built on Sept. 17, 2024, 5:08 p.m.