Nothing
#' plot.ECFOCF plots a result of clutch frequency fit.
#' @title Plot a result of clutch frequency fit.
#' @author Marc Girondot
#' @return Nothing
#' @param x A result for fitCF().
#' @param ... Graphic parameters, see plot.TableECFOCF() or par.
#' @param result What result will be plotted: data, dataOCF, dataECF, ECF, OCF, ECFOCF, ECFOCF0, CF, Prob, period
#' @param category What category will be plotted, numeric or NA for all.
#' @param period The period that will be plotted.
#' @param resultMCMC A result from fitRMU_MHmcmc.
#' @param chain Which chain to be used in resultMCMC.
#' @param replicates How many replicates fron resultMCMC.
#' @description This function plots the result of fitCF().\cr
#' The result \code{data} plots the observed ECF-OCF table.\cr
#' The result \code{dataOCF} plots the observed OCF table.\cr
#' The result \code{dataECF} plots the observed ECF table.\cr
#' The result \code{CF} plots the true clutch frequency.\cr
#' The result \code{OCF} plots the observed clutch frequency.\cr
#' The result \code{ECF} plots the estimated clutch frequency.\cr
#' The result \code{ECFOCF} plots the bivariate observed vs. estimated clutch frequency.\cr
#' The result \code{ECFOCF0} plots the bivariate observed vs. estimated clutch frequency without the 0 OCF.\cr
#' The result \code{prob} plots the probabilities of capture.\cr
#' The result \code{period} plots the probabilities of nesting according to period.\cr
#' If category is left to NA, the compound value for all the population is plotted.\cr
#' When result="data" is used, this is a parser for plot.TableECFOCF().\cr
#' See this function for the parameters.\cr
#' The parameter y.axis is the shift of the x legends for result="prob".\cr
#' When a \code{resultMCMC} is indicated, if replicates is "all", all values are used;
#' if a value lower than number of iterations is indicated, a regular thinning is used and
#' if a value larger then number if iteration is indicated, a sampling with replacement is used.\cr
#' @family Model of Clutch Frequency
#' @examples
#' \dontrun{
#' library(phenology)
#' # Example
#' data(MarineTurtles_2002)
#' ECFOCF_2002 <- TableECFOCF(MarineTurtles_2002)
#' o_mu1p2_NB <- fitCF(x = c(mu = 4.6426989650675701,
#' sd = 75.828239144717074,
#' p1 = 0.62036295627161053,
#' p2 = -2.3923021862881511,
#' OTN = 0.33107456308054345),
#' data=ECFOCF_2002)
#'
#' par(mar=c(4, 4, 1, 1)+0.4)
#' plot(o_mu1p2_NB, result="data", category=NA,
#' bty="n", las=1, cex.points=3, cex.axis = 0.8)
#' plot(o_mu1p2_NB,result="data", category=NA,
#' bty="n", las=1, cex.points=3, pch=NA,
#' col.labels = "red", show.labels=TRUE, cex.0=0.2,
#' show.0 = TRUE, col.0="blue", pch.0=4)
#' plot(o_mu1p2_NB, result="dataOCF", category=NA,
#' bty="n", las=1)
#' plot(o_mu1p2_NB, result="dataECF", category=NA,
#' bty="n", las=1)
#'
#' plot(o_mu1p2_NB, result="CF", bty="n", las=1)
#'
#' plot(o_mu1p2_NB, result="OCF", category=1, bty="n", las=1)
#' plot(o_mu1p2_NB, result="OCF", category=2, bty="n", las=1)
#'
#' plot(o_mu1p2_NB, result="ECFOCF", bty="n", las=1)
#'
#' plot(o_mu1p2_NB, result="ECFOCF0", bty="n", las=1)
#' plot(o_mu1p2_NB, result="ECFOCF0", category=1, bty="n", las=1)
#' plot(o_mu1p2_NB, result="ECFOCF0", category=2, bty="n", las=1)
#'
#' plot(o_mu1p2_NB, result="Prob", category=c(1, 2), bty="n", las=1)
#' plot(o_mu1p2_NB, result="Prob", category=c(2, 1), bty="n", las=1)
#'
#' }
#' @method plot ECFOCF
#' @export
# plot de la table ECF OCF ####
plot.ECFOCF <- function(x, ..., result="CF", category=NA, period=1,
resultMCMC = NULL,
chain =1,
replicates = "all") {
p3p <- list(...)
# result="CF"; category=NA; period=1; p3p=list(); x=NULL
result <- tolower(result)
result <- match.arg(result, choices = tolower(c("data", "dataOCF",
"dataECF",
"CF",
"OCF",
"ECF",
"ECFOCF",
"ECFOCF0",
"prob",
"period")))
samples <- NULL
if (!is.null(resultMCMC)) {
samples <- 1:(nrow(resultMCMC$resultMCMC[[chain]]))
if (replicates != "all") {
replicates <- as.numeric(replicates)
if (replicates <= max(samples)) {
samples <- floor(seq(from=1, to=nrow(resultMCMC$resultMCMC[[chain]]), length.out=replicates))
# samples <- sample(x=samples, size=replicates, replace = FALSE)
} else {
samples <- sample(x=samples, size=replicates, replace = TRUE)
}
}
}
if (result=="data") {
do.call(getFromNamespace("plot.TableECFOCF", ns="phenology"),
modifyList(list(x=x$data,
period=period,
cex.points=4,
pch=19,
col="black",
cex.axis=0.8,
cex.labels=0.5,
col.labels="red",
show.labels=FALSE,
show.0=FALSE,
pch.0=4,
cex.0=0.5,
col.0="blue",
show.scale = TRUE), p3p))
}
if (result=="ecfocf0") {
if (all(is.na(category)) | (all(category == ""))) {
do.call(getFromNamespace("plot.TableECFOCF", ns="phenology"),
modifyList(list(x=x$ECFOCF_0,
period=period,
cex.points=4,
pch=19,
col="black",
cex.axis=0.8,
cex.labels=0.5,
col.labels="red",
show.labels=FALSE,
show.0=FALSE,
pch.0=4,
cex.0=0.5,
col.0="blue",
show.scale = TRUE), p3p))
} else {
do.call(getFromNamespace("plot.TableECFOCF", ns="phenology"),
modifyList(list(x=x$ECFOCF_0_categories[[as.numeric(category)]],
period=period,
cex.points=4,
pch=19,
col="black",
cex.axis=0.8,
cex.labels=0.5,
col.labels="red",
show.labels=FALSE,
show.0=FALSE,
pch.0=4,
cex.0=0.5,
col.0="blue",
show.scale = TRUE), p3p))
}
}
if (result=="ecfocf") {
if (all(is.na(category)) | (all(category == ""))) {
do.call(getFromNamespace("plot.TableECFOCF", ns="phenology"),
modifyList(list(x=x$ECFOCF,
period=period,
cex.points=4,
pch=19,
col="black",
cex.axis=0.8,
cex.labels=0.5,
col.labels="red",
show.labels=FALSE,
show.0=FALSE,
pch.0=4,
cex.0=0.5,
col.0="blue",
show.scale = TRUE), p3p))
} else {
do.call(getFromNamespace("plot.TableECFOCF", ns="phenology"),
modifyList(list(x=x$ECFOCF_categories[[as.numeric(category)]],
period=period,
cex.points=4,
pch=19,
col="black",
cex.axis=0.8,
cex.labels=0.5,
col.labels="red",
show.labels=FALSE,
show.0=FALSE,
pch.0=4,
cex.0=0.5,
col.0="blue",
show.scale = TRUE), p3p))
}
}
if (result=="cf") {
# Si SE...
if (!is.null(samples)) {
CF_matrix <- universalmclapply(X=seq_along(samples), FUN = function(i) {
par <- resultMCMC$resultMCMC[[chain]][samples[i], ]
cf_e <- fitCF(x=par, fixed.parameters = x$fixed.parameters, data=x$data,
itnmax = 0, hessian = FALSE)
if (all(is.na(category)) | (all(category == ""))) {
cf_e <- cf_e$CF
} else {
cf_e <- cf_e$CF_categories[[as.numeric(category)]]
}
return(cf_e)
}, mc.cores = detectCores(),
clusterEvalQ=list(expr=expression(library(phenology))),
clusterExport=list(varlist=c("x", "resultMCMC", "category", "chain"), envir=environment()),
progressbar=TRUE)
CF_matrix <- t(sapply(CF_matrix, FUN = function(x) x))
q <- apply(X=CF_matrix, MARGIN=2, FUN=function(c) quantile(c, probs=c(0.025, 0.5, 0.975)))
if (all(is.na(category)) | (all(category == ""))) {
main="Clutch Frequency: All categories"
} else {
main=paste0("Clutch Frequency: Category ", as.character(category))
}
maxq <- ncol(q)
do.call(plot_errbar, modifyList(list(x=1:maxq,
xlab="Clutch Frequency",
ylab="Density",
main=main,
y=q["50%", 1:maxq],
y.minus=q["2.5%", 1:maxq],
y.plus=q["97.5%", 1:maxq],
pch=19,
bty="n",
ylim=c(0, max(q["97.5%", 1:maxq])),
type="p", xaxt="n"), p3p)[c("x", "y", "type", "col",
"pch", "y.minus", "y.plus", "bty",
"main", "cex.axis", "bty", "las",
"xlab", "ylab", "xaxt", "xlim", "ylim")])
axis(side = 1, at=1:maxq, cex.axis=unlist(modifyList(list(cex.axis=0.8), p3p)[c("cex.axis")]))
} else {
if (all(is.na(category)) | (all(category == ""))) {
cf <- x$CF
main="Clutch Frequency: All categories"
} else {
cf <- x$CF_categories[[as.numeric(category)]]
main=paste0("Clutch Frequency: Category ", as.character(category))
}
do.call(plot, modifyList(list(x=1:length(cf),
xlab="Clutch Frequency",
ylab="Density",
main=main,
y=cf, type="h", xaxt="n"), p3p)[c("x", "y", "type", "col",
"main", "cex.axis", "bty", "las",
"xlab", "ylab", "xaxt", "xlim", "ylim")])
axis(side = 1, at=1:length(cf), cex.axis=unlist(modifyList(list(cex.axis=0.8), p3p)[c("cex.axis")]))
}
}
if ((result=="ocf") | (result=="dataocf")) {
if (result=="ocf") {
ylab="Density"
if (all(is.na(category)) | (all(category == ""))) {
ecfocf <- x$ECFOCF[, , period]
main="Observed Clutch Frequency: All categories"
} else {
ecfocf <- x$ECFOCF_categories[[as.numeric(category)]][, , period]
main=paste0("Observed Clutch Frequency: Category ", as.character(category))
}
} else {
ylab="Frequency"
ecfocf <- x$data[, , period]
main="Observed OCF"
}
ocf <- rowSums(ecfocf, na.rm = TRUE)
do.call(plot, modifyList(list(x=0:(length(ocf)-1),
xlab="Observed Clutch Frequency",
ylab=ylab,
main=main,
y=ocf, type="h"), p3p)[c("x", "y", "type", "col",
"main", "cex.axis", "bty", "las",
"xlab", "ylab", "xlim", "ylim",
"xaxt", "yaxt", "axes")])
}
if ((result=="ecf") | (result=="dataecf")) {
if (result=="ecf") {
ylab="Density"
if (all(is.na(category)) | (all(category == ""))) {
ecfocf <- x$ECFOCF[, , period]
main="Estimated Clutch Frequency: All categories"
} else {
ecfocf <- x$ECFOCF_categories[[as.numeric(category)]][, , period]
main=paste0("Estimated Clutch Frequency: Category ", as.character(category))
}
} else {
ylab="Frequency"
ecfocf <- x$data[, , period]
main="Observed ECF"
}
ecf <- colSums(ecfocf, na.rm = TRUE)
do.call(plot, modifyList(list(x=0:(length(ecf)-1),
xlab="Estimated Clutch Frequency",
ylab=ylab,
main=main,
y=ecf, type="h"), p3p)[c("x", "y", "type", "col",
"main", "cex.axis", "bty", "las",
"xlab", "ylab", "xlim", "ylim",
"xaxt", "yaxt", "axes")])
}
if (result=="period") {
if (all(is.na(category)) | (all(category == ""))) {
y <- x$period
main="All categories"
} else {
y <- x$period_categories[[as.numeric(category)]]
main=paste("Category", category)
}
perr <- list(x=0:(length(y)-1),
y=y,
las=1, bty="n",
ylab="Probability of nesting", xlab="Period",
main=main)
perr <- modifyList(perr, p3p)
do.call(plot, perr)
}
if (result=="prob") {
if (is.null(x$SE_df)) {
warning("The estimate of standard error for capture probability is not available")
} else {
if (all(is.na(category)) | (all(category == ""))) {
category <- ""
cl <- sapply(X = rownames(x$SE_df), function(x) {
# Je le prends si probx
grepl("prob", x)
})
} else {
# Si j'ai une catégorie
category <- as.character(category)
cl <- sapply(X = rownames(x$SE_df), function(x) {
# Je le prends si probx
grepl(paste0("prob", category, "\\."), x) |
# ou ax
grepl(paste0("a", category), x) |
# ou prob. et category = 1 mais pas si ax
((grepl(paste0("prob\\."), x)) & (category == "1") & !grepl(paste0("a[^", category, "]"), x))
})
}
perr <- list(x=1:sum(cl),
y=x$SE_df[cl, "Estimate"],
y.minus=x$SE_df[cl, "2.5 %"],
y.plus = x$SE_df[cl, "97.5 %"],
xlim=c(0.5, sum(cl)+0.5), ylim=c(0,1),
las=1, bty="n", xaxt="n",
ylab="Probability of capture", xlab="Categories",
main="SE using delta method")
perr <- modifyList(perr, p3p)
do.call(plot_errbar, perr)
if (is.null(p3p$xaxt)) p3p$xaxt <- "r"
if (p3p$xaxt != "n") {
segments(x0=1:sum(cl),
y0=-0.1, y1=-0.15, xpd=TRUE)
cex <- p3p[["cex.axis"]]
y <- p3p[["y.axis"]]
if (is.null(cex)) cex <- 1
if (is.null(y)) y <- -0.3
do.call(text, modifyList(list(x = 1:sum(cl),
y=y,
cex=cex,
labels = rownames(x$SE_df)[cl],
xpd=TRUE), p3p[c("srt", "labels")]))
}
}
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.