| SpectralCoclustering | R Documentation |
This is a wrapper around the Python class sklearn.cluster.SpectralCoclustering.
rgudhi::PythonClass -> rgudhi::SKLearnClass -> rgudhi::BaseClustering -> SpectralCoclustering
new()The SpectralCoclustering class constructor.
SpectralCoclustering$new(
n_clusters = 3L,
svd_method = c("randomized", "arpack"),
n_svd_vecs = NULL,
mini_batch = FALSE,
init = c("k-means++", "random"),
n_init = 10L,
random_state = NULL
)n_clustersAn integer value specifying the number of biclusters to
find. Defaults to 3L.
svd_methodA string specifying the algorithm for finding singular
vectors. May be "randomized" or "arpack". If "randomized", uses
sklearn.utils.extmath.randomized_svd(), which may be faster for large
matrices. If "arpack", uses scipy.sparse.linalg.svds(), which is
more accurate, but possibly slower in some cases. Defaults to
"randomized".
n_svd_vecsAn integer value specifying the number of vectors to
use in calculating the SVD. Corresponds to ncv when svd_method == "arpack" and n_oversamples when svd_method == "randomized".
Defaults to NULL.
mini_batchA boolean value specifying whether to use mini-batch
k-means, which is faster but may get different results. Defaults to
FALSE.
initA string specifying the method for initialization of k-means
algorithm. Choices are "k-means++" or "random". Defaults to
"k-means++".
n_initAn integer value specifying the number of random
initializations that are tried with the k-means algorithm. If
mini-batch k-means is used, the best initialization is chosen and the
algorithm runs once. Otherwise, the algorithm is run for each
initialization and the best solution chosen. Defaults to 10L.
random_stateAn integer value specifying a pseudo random number
generator used for the initialization of the lobpcg eigenvectors
decomposition when eigen_solver == "amg", and for the k-means
initialization. Defaults to NULL which uses clock time.
An object of class SpectralCoclustering.
clone()The objects of this class are cloneable with this method.
SpectralCoclustering$clone(deep = FALSE)
deepWhether to make a deep clone.
cl <- SpectralCoclustering$new()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.